Abstract:
A non-volatile memory device includes a dielectric layer between a charge storage layer and a substrate. Free bonds of the dielectric layer can be reduced to reduce/prevent charges from leaking through the free bonds and/or from being trapped by the free bonds. As a result, data retention properties and/or durability of a non-volatile memory device may be enhanced.
Abstract:
An electrically erasable charge trap nonvolatile memory cell has an initial threshold voltage, a program voltage that is higher than the initial threshold voltage, and an erase threshold voltage that is lower than the program threshold voltage but is higher than the initial threshold voltage. The programmed electrically erasable charge trap nonvolatile memory cells may be erased by applying an erase voltage for a time interval that is sufficient to lower the threshold voltage the transistor from a program threshold voltage to an erase threshold voltage that is lower than the program threshold voltage, but is higher than the initial threshold voltage. The time interval may be determined by repeatedly performing an endurance test using a time interval that is increased or decreased from an initial time interval, to obtain the time interval that meets an endurance specification, or allows a read to be performed successfully.
Abstract:
This disclosure provides cells of nonvolatile memory devices with floating gates and methods for fabricating the same. The cell of the nonvolatile memory device includes device isolation layers in parallel with each other on a predetermined region of a semiconductor substrate that define a plurality of active regions. Each device isolation layer has sidewalls that project over the semiconductor substrate. A plurality of word lines crosses over the device isolation layers. A tunnel oxide layer, a floating gate, a gate interlayer dielectric layer, and a control gate electrode are sequentially stacked between each active region and each word line. The floating gate and the control gate electrode have sidewalls that are self-aligned to the adjacent device isolation layers. The method for forming the self-aligned floating gate and the control gate electrode includes forming trenches in a semiconductor substrate to define a plurality of active regions and concurrently forming an oxide layer pattern, a floating gate pattern, a dielectric layer pattern and a control gate pattern that are sequentially stacked. A conductive layer is then formed on the device isolation layers and the control gate pattern. Thereafter, the conductive layer, the control gate pattern, the dielectric layer pattern, the floating gate pattern, and the oxide layer pattern are successively patterned.
Abstract:
Flash memory devices are provided including an integrated circuit substrate and a stack gate structure on the integrated circuit substrate. A trench isolation region is provided on the integrated circuit substrate adjacent the stack gate structure. A portion of the stack gate structure adjacent a trench sidewall of the trench isolation region may include a first nitrogen doped layer.
Abstract:
A FinFET includes a fin that is on a substrate and extends away from the substrate. A device isolation layer is disposed on the substrate on both sides of the fin. An insulating layer is between the fin and the substrate. The insulating layer is directly connected to the device isolation layer and has a different thickness than the device isolation layer. A gate electrode crosses over the fin. A gate insulating layer is between the gate electrode and the fin. Source and drain regions are on the fins and on opposite sides of the gate electrode. Related nonvolatile memory devices that include FinFETs and methods of making FinFETs and nonvolatile memory devices are also disclosed.
Abstract:
A non-volatile memory device includes an array of flash memory cells therein and a voltage generator. The voltage generator is configured to generate a program voltage (Vpgm), a pass voltage (Vpass), a blocking voltage (Vblock) and a decoupling voltage (Vdcp) during a flash memory programming operation. The blocking voltage is generated at a level that inhibits inadvertent programming of an unselected memory cell(s). This voltage level of the blocking voltage is set so that Vdcp
Abstract:
Methods of forming a memory device include forming a device isolation layer in a semiconductor substrate including a cell array region and a resistor region, the device isolation layer extending into the resistor region and defining an active region in the semiconductor substrate. A first conductive layer is formed on the device isolation layer in the resistor region. The semiconductor substrate is exposed in the cell array region. A cell insulation layer is formed on a portion of the semiconductor substrate including the exposed cell array region, the active region and the device isolation layer in the resistor region. A second conductive layer is formed on the cell insulation layer in the portion of the semiconductor substrate including the exposed cell array region, the active region and the device isolation layer in the resistor region. The second conductive layer is etched to form a cell gate electrode in the cell array region and to concurrently remove the second conductive layer from the resistor region and the first conductive layer is etched in the resistor region to form a resistor.
Abstract:
A method and apparatus for controlling a video encoding data rate in real-time in order to minimize performance deterioration, even when a scene change has occurred in an application field having a small number of available bits due to a low bit rate and a high frame rate. The method includes: a first step of determining whether scene change has occurred in a current frame; a second step of determining whether a number of current available bits is more than a preset reference when it is determined that the scene change has occurred; and a third step of adjusting a Quantization Parameter (QP) according to a first preset condition when it is determined that the number of current available bits is more than that preset reference. An apparatus includes an encoder QP controller having a QP module for adjusting the QP.
Abstract:
An optical transmission system for optimizing the bias of a laser diode during an SCM analog optical transmission includes an optical transmitter for converting a baseband electric signal into an optical signal using a laser diode according to the set bias and outputting the optical signal through an optical line, an optical receiver for converting the optical signal transmitted from the optical transmitter into the baseband electric signal, a recovery unit for detecting an error generated according to the bias of the laser diode on the basis of the electric signal converted by the optical receiver, and a bias adjuster for optimally adjusting the bias of the laser diode on the basis of a value of the error detected by the reproducer.
Abstract:
Semiconductor devices are provided on a substrate having a cell array region and a peripheral circuit region. A first device isolation layer defines a cell active region in the cell array region and a second device isolation layer having first and second sidewalls defines a peripheral active region in the peripheral circuit region. A cell gate pattern that includes a plurality of conductive layers crosses over the cell active region, and a peripheral gate pattern that includes a plurality of conductive layers crosses over the peripheral active region. A lowermost layer of the peripheral gate pattern has first and second sidewalls that are aligned with respective of either the first and second sidewalls of the second device isolation layer or a vertical extension of the first and second sidewalls of the second device isolation layer. Further, the lowest layer of the cell gate pattern and the lowest layer of the peripheral gate pattern comprise different conductive layers.