Abstract:
A method for integrating a metal-insulator-metal (MIM) capacitor in back end of line (BEOL) wiring levels of a semiconductor device includes forming an isolating layer over a lower wiring level, forming a bottom electrode of the capacitor on the isolating layer, and forming an interlevel dielectric material on the isolating layer and the bottom electrode. A capacitor dielectric is formed on the bottom electrode and a top electrode of the capacitor is formed on the capacitor dielectric, wherein the top electrode is formed concurrently with an upper wiring level, the upper level being the next successive wiring level with respect to the lower wiring level.
Abstract:
Varactors are provided which have a high tunability and/or a high quality factor associated therewith as well as methods for fabricating the same. One type of varactor disclosed is a quasi hyper-abrupt base-collector junction varactor which includes a substrate having a collector region of a first conductivity type atop a subcollector region, the collector region having a plurality of isolation regions present therein; reach-through implant regions located between at least a pair of the isolation regions; a SiGe layer atop a portion of the substrate not containing a reach-through implant region, the SiGe layer having an extrinsic base region of a second conductivity type which is different from the first conductivity type; and an antimony implant region located between the extrinsic base region and the subcollector region. Another type of varactor disclosed is an MOS varactor which includes at least a poly gate region and a well region wherein the poly gate region and the well region have opposite polarities.
Abstract:
Schottky barrier diodes use a dielectric separation region to bound an active region. The dielectric separation region permits the elimination of a guard ring in at least one dimension. Further, using a dielectric separation region in an active portion of the integrated circuit device may reduce or eliminate parasitic capacitance by eliminating this guard ring.
Abstract:
A method for improving the SiGe bipolar yield as well as fabricating a SiGe heterojunction bipolar transistor is provided. The inventive method includes ion-implanting carbon, C, into at one of the following regions of the device: the collector region, the sub-collector region, the extrinsic base regions, and the collector-base junction region. In a preferred embodiment each of the aforesaid regions include C implants.
Abstract:
A process for forming at least one interface region between two regions of semiconductor material. At least one region of dielectric material comprising nitrogen is formed in the vicinity of at least a portion of a boundary between the two regions of semiconductor material, thereby controlling electrical resistance at the interface.
Abstract:
A method and structure for a MIM capacitor, the structure including: an electronic device, comprising: an interlevel dielectric layer formed on a semiconductor substrate; a copper bottom electrode formed in the interlevel dielectric layer, a top surface of the bottom electrode co-planer with a top surface of the interlevel dielectric layer; a conductive diffusion barrier in direct contact with the top surface of the bottom electrode; a MIM dielectric in direct contact with a top surface of the conductive diffusion barrier; and a top electrode in direct contact with a top surface of the MIM dielectric. The conductive diffusion barrier may be recessed into the copper bottom electrode or an additional recessed conductive diffusion barrier provided. Compatible resistor and alignment mark structures are also disclosed.
Abstract:
A stacked Poly-Poly/MOS capacitor useful as a component in a BiCMOS device comprising a semiconductor substrate having a region of a first conductivity-type formed in a surface thereof; a gate oxide formed on said semiconductor substrate overlaying said region of first conductivity-type; a first polysilicon layer formed on at least said gate oxide layer, said first polysilicon layer being doped with an N or P-type dopant; a dielectric layer formed on said first polysilicon layer; and a second polysilicon layer formed on said dielectric layer, said second polysilicon layer being doped with the same or different dopant as the first polysilicon layer.
Abstract:
A process for forming at least one interface region between two regions of semiconductor material. At least one region of dielectric material comprising nitrogen is formed in the vicinity of at least a portion of a boundary between the two regions of semiconductor material, thereby controlling electrical resistance at the interface.
Abstract:
A method of forming a diffusion region in a silicon substrate having low-resistance, acceptable defect density, reliability and process control comprising the steps of: (a) subjecting a silicon substrate to a first ion implantation step, said first ion implantation step being conducted under conditions such that a region of amorphized Si is formed in said silicon substrate; (b) subjecting said silicon substrate containing said region of amorphized Si to a second ion implantation step, said second ion implantation step being carried out by implanting a dopant ion into said silicon substrate under conditions such that the peak of implant of said dopant ion is within the region of amorphized Si; and (c) annealing said silicon substrate under conditions such that said region of amorphized Si is re-crystallized thereby forming a diffusion region in said silicon substrate is provided.
Abstract:
A stacked Poly-Poly/MOS capacitor useful as a component in a BiCMOS device comprising a semiconductor substrate having a region of a first conductivity-type formed in a surface thereof; a gate oxide formed on said semiconductor substrate overlaying said region of first conductivity-type; a first polysilicon layer formed on at least said gate oxide layer, said first polysilicon layer being doped with an N or P-type dopant; a dielectric layer formed on said first polysilicon layer; and a second polysilicon layer formed on said dielectric layer, said second polysilicon layer being doped with the same or different dopant as the first polysilicon layer.