摘要:
A memory controller and data processor have their operation mode switched from the page-on mode for high-speed access to a same page to the page-off mode in response to consecutive events of access to different pages, so that the memory access is performed at a high speed and low power consumption.
摘要:
In order to implement a memory having a large storage capacity and a reduced data retention current, a non-volatile memory, an SRAM, a DRAM, and a control circuit are modularized into one package. The control circuit conducts assignment of addresses to the SRAM and DRAM, and stores data that must be retained over a long period of time in the SRAM. In the DRAM, a plurality of banks are divided into two sets, and mapped to the same address space, and sets are refreshed alternately. A plurality of chips of them are stacked and disposed, and wired by using the BGA and chip-to-chip bonding.
摘要:
A high-speed, low-cost data processing system capable of ensuring expandability of memory capacity and having excellent usability while keeping constant latency is provided. The data processing system is configured to include a data processing device, a volatile memory, and a non-volatile memory. As the data processing device, the volatile memory, and the non-volatile memory are connected in series and the number of connection signals are reduced, the speed is increased while keeping expandability of memory capacity. The data processing device measures latency and performs a latency correcting operation to keep the latency constant. When data in the non-volatile memory is transferred to the volatile memory, error correction is performed to improve reliability. The data processing system formed of these plurality of chips is configured as a data processing system module in which the chips are disposed so as to be multilayered each other and are connected by a ball grid array (BGA) or a technology of wiring these chips.
摘要:
Provided is a user-friendly information processing system which is capable of maintaining latency within a fixed range and ensuring the expandability of a memory capacity at high speed and low cost. The information processing system, including an information processing device, a volatile memory, and nonvolatile memories, is configured. The information processing device, the volatile memory, and the nonvolatile memories are connected in series with one another to reduce the number of connection signals, thereby realizing speeding-up while maintaining the expandability of the memory capacity. The information processing device manages response time zones and time zones where responses overlap one another, and performs a correction operation on the latency, thereby realizing fast data transfer while maintaining the latency within the fixed range. The information processing device performs an error correction to improve the reliability when transferring the data of the nonvolatile memories to the volatile memory. The information processing system composed of a plurality of chips is configured as an information processing system/module in which the respective chips are arranged in layers, and wired together by a through via.
摘要:
A semiconductor device including a large capacity non-volatile memory and at least one random access memory, said the access time of said device being matched to the access time of each random access memory. The semiconductor memory device is comprised of: a non-volatile memory FLASH having a first reading time; a random access memory DRAM having a second reading time which is more than 100 times shorter than the first reading time; a circuit that includes a control circuit connected to both the FLASH and the DRAM and enabled to control accesses to those FLASH and DRAM; and a plurality of I/O terminals connected to the circuit. As a result, FLASH data is transferred to the DRAM before the DRAM is accessed, thereby matching the access time between the FLASH and the DRAM. Data is written back from the DRAM to the FLASH as needed, thereby keeping data matched between the FLASH and the DRAM and storing the data.
摘要:
In an information processor system including a memory device (MEM0), a memory control device (SL0) capable of controlling an operation of the memory device, and a plurality of bus masters (MS0 to MS3) capable of giving access to the memory device through the memory control device, the memory control device includes a control circuit (SDCON) capable of giving a notice of information about a time that a data transfer from the memory device can be started to the bus master related to an access request. The bus master can cause the time information thus given to be a judgment factor as to whether an access request is given to the memory device or not. Consequently, each of the bus masters can avoid the generation of a useless access request and a data transfer to the masters to be accessed can be carried out smoothly.
摘要:
A control circuit of a semiconductor device (memory module) realizes long life and others by a mechanism that suppresses and smoothes variations in use of a memory by equalizing the sizes of data write and data erase with respect to a data write request and sequentially allocating and using addresses of the memory in data write to an overwritable non-volatile memory device without carrying out an overwriting operation even in the case of an overwrite request. The control circuit realizes data write by a set of two types of operations of (a) an operation of erasing data of a first address or an operation of setting a flag value to an invalid state and (b) an operation of writing data to a second address different from the first address or an operation of setting a flag value to a valid state.
摘要:
Provided is a user-friendly information processing system which is capable of maintaining latency within a fixed range and ensuring the expandability of a memory capacity at high speed and low cost. The information processing system, including an information processing device, a volatile memory, and nonvolatile memories, is configured. The information processing device, the volatile memory, and the nonvolatile memories are connected in series with one another to reduce the number of connection signals, thereby realizing speeding-up while maintaining the expandability of the memory capacity. The information processing device manages response time zones and time zones where responses overlap one another, and performs a correction operation on the latency, thereby realizing fast data transfer while maintaining the latency within the fixed range. The information processing device performs an error correction to improve the reliability when transferring the data of the nonvolatile memories to the volatile memory. The information processing system composed of a plurality of chips is configured as an information processing system/module in which the respective chips are arranged in layers, and wired together by a through via.
摘要:
A high-speed, low-cost data processing system capable of ensuring expandability of memory capacity and having excellent usability while keeping constant latency is provided. The data processing system is configured to include a data processing device, a volatile memory, and a non-volatile memory. As the data processing device, the volatile memory, and the non-volatile memory are connected in series and the number of connection signals are reduced, the speed is increased while keeping expandability of memory capacity. The data processing device measures latency and performs a latency correcting operation to keep the latency constant. When data in the non-volatile memory is transferred to the volatile memory, error correction is performed to improve reliability. The data processing system formed of these plurality of chips is configured as a data processing system module in which the chips are disposed so as to be multilayered each other and are connected by a ball grid array (BGA) or a technology of wiring these chips.
摘要:
A semiconductor device including a large capacity non-volatile memory and at least one random access memory, said the access time of said device being matched to the access time of each random access memory. The semiconductor memory device is comprised of: a non-volatile memory FLASH having a first reading time; a random access memory DRAM having a second reading time which is more than 100 times shorter than the first reading time; a circuit that includes a control circuit connected to both the FLASH and the DRAM and enabled to control accesses to those FLASH and DRAM; and a plurality of I/O terminals connected to the circuit. As a result, FLASH data is transferred to the DRAM before the DRAM is accessed, thereby matching the access time between the FLASH and the DRAM. Data is written back from the DRAM to the FLASH as needed, thereby keeping data matched between the FLASH and the DRAM and storing the data.