Abstract:
A substrate holder for a lithographic apparatus has a main body having a thin-film stack provided on a surface thereof. The thin-film stack forms an electronic or electric component such as an electrode, a sensor, a heater, a transistor or a logic device, and has a top isolation layer. A plurality of burls to support a substrate are formed on the thin-film stack or in apertures of the thin-film stack.
Abstract:
A lithographic projection apparatus includes a support structure configured to hold a patterning device, the patterning device configured to pattern a beam of radiation according to a desired pattern; a substrate table configured to hold a substrate; a projection system configured to project the patterned beam onto a target portion of the substrate; a liquid supply system configured to provide liquid to a space between the projection system and the substrate; and a shutter configured to isolate the space from the substrate or a space to be occupied by a substrate.
Abstract:
In a lithographic projection apparatus, a liquid supply system maintains liquid in a space between a projection system of the lithographic projection apparatus and a substrate. A sensor positioned on a substrate table, which holds the substrate, is configured to be exposed to radiation when immersed in liquid (e.g., under the same conditions as the substrate will be exposed to radiation). By having a surface of an absorption element of the sensor, that is to be in contact with liquid, formed of no more than one metal type, long life of the sensor may be obtained.
Abstract:
A liquid supply system for an immersion lithographic apparatus provides a laminar flow of immersion liquid between a final element of the projection system and a substrate. A control system minimizes the chances of overflowing and an extractor includes an array of outlets configured to minimize vibrations.
Abstract:
In a lithographic apparatus, a localized area of the substrate surface under a projection system is immersed in liquid. The height of a liquid supply system above the surface of the substrate can be varied using actuators. A control system uses feedforward or feedback control with input of the surface height of the substrate to maintain the liquid supply system at a predetermined height above the surface of the substrate.
Abstract:
In an immersion lithography apparatus, the immersion liquid is supplied from a tank via a flow restrictor. The liquid held in the tank is maintained at a substantially constant height above the flow restrictor to ensure a constant flow of liquid.
Abstract:
A lithographic projection apparatus is disclosed in which a liquid supply system provides a liquid between the projection system and the substrate. An active drying station is provided to actively remove the liquid from the substrate W or other objects after immersion of all or part of a surface of the substrate W or other objects.
Abstract:
A system for positioning, a stage system, a lithographic apparatus, a method for positioning and a method for manufacturing a device in which use is made of a stage system. The stage system has a plurality of air bearing devices. Each air bearing device has: a gas bearing body which has a free surface, a primary channel which extends through the bearing body and has an inlet opening in the free surface, and a secondary channel system which extends through the bearing body and which has a plurality of discharge openings in the free surface. The flow resistance in the secondary channel system can be higher than the flow resistance in the primary channel.
Abstract:
A substrate holder for use in a lithographic apparatus, the substrate holder including: a main body; a plurality of first burls provided on a first side of the main body and having end surfaces to support a substrate, wherein the first burls each include CrN; and a plurality of second burls provided on a second side of the main body.
Abstract:
Embodiments of a drain in a lithographic projection apparatus are described that have, for example, a feature which reduces inflow of gas into the drain during a period when no liquid is present in the drain. In one example, a passive liquid removal mechanism is provided such that the pressure of gas in the drain is equal to the ambient gas pressure and in another embodiment a flap is provided to close off a chamber during times when no liquid needs removing.