Abstract:
Provided is a multistage method and apparatus for concentrating a solution by reverse osmosis, comprising the steps and means for: maximizing the concentration of absolute in a solution in a multistage apparatus having only standard capacity pumps, including steps of providing first concentrating means for concentrating a solution to a first concentration, said first concentrating means comprising at least one concentrating unit which positioned upstream with respect to a direction in which a solution to be concentrated flows, and providing second concentrating means for concentrating the solution that has been concentrated by first concentrating means to a second concentration which is higher than said first concentrating means comprising at least one concentrating unit which is positioned downstream with respect to said direction; said concentrating units comprising consisting essentially of respective membrane modules and respective standard capacity pumps, the membrane module of the concentrating unit of said first concentrating means comprising a tight reverse osmosis membrane with a high rejection percentage sufficient to achieve a high concentration of said solution with a high flux density of solvent flowing through the membrane, and the membrane module of the concentrating unit of said second concentrating means comprising a loose reverse osmosis membrane with a lower rejection percentage sufficient to easily achieve a further concentration of said first concentrating means with a high flux density of solution flowing through the membrane.
Abstract:
A hard roll is produced by a process utilizing the steps of winding a fiber material impregnated with a thermosetting resin around the outer peripheral surface of a metal roll core to form a fiber-reinforced lower winding layer, then injecting a thermosetting synthetic resin material into a mold of predetermined size and curing the material at a specified temperature to form an outer layer hollow cylinder separately from the first step. The next stepsave fitting the outer layer cylinder around the roll core covered with the winding layer, and injecting an adhesive of low viscosity into an annular clearance between the winding layer and the cylinder and then curing the adhesive at a specified temperature to bond the winding layer to the cylinder with the layer of adhesive.
Abstract:
An improved arrangement is provided for forming a bipolar transistor on a substrate with CMOS elements. All of the transistors (i.e., the bipolar, P-MOS and N-MOS) are formed in regions having gradually decreasing impurity concentrations from a surface toward the substrate. In addition, a buried layer is provided under each of the regions of decreasing impurity concentration in which the transistors are formed. These buried layers have a significantly higher impurity concentration than the portion of the region of decreasing impurity concentration which they are respectively adjacent to. Using this arrangement, punch-through is prevented and excellent electrical operating characteristics are provided for both the bipolar transistors and the CMOS elements.
Abstract:
A polyurethane rubber covered roll comprises a metallic roll core, a reinforcing layer adhering to the outer surface of the roll core, and formed by a nonwoven fabric impregnated with a mixture of a thermosetting resin and a fine inorganic powder, and a layer of polyurethane rubber united integrally with the outer surface of the reinforcing layer. The roll is useful when used, for example, in a paper machine.
Abstract:
A press belt (2) comprises both-end corresponding regions B positioned so as to correspond to both ends of a press roll (1) or a press shoe (3) in a width direction and having a small thickness and a center region A positioned between the both-end corresponding regions B and having a thickness larger than that of the both-end corresponding region B.
Abstract:
A first converter circuit converts a state signal, whose level is constant or slowly varies during a predetermine period of time, into a pulse signal to allow the signal to propagate across an electrically insulating area. A second converter circuit converts the pulse signal, which has propagated through an insulating circuit, into the original state signal or a signal having the same characteristics as the original state signal.
Abstract:
A semiconductor device includes (a) a vertical field effect transistor, the vertical field effect transistor including a drain electrode formed on a first surface of a first conductivity type of a semiconductor, a pair of first trenches formed from a second surface of the semiconductor, control regions of a second conductivity type formed respectively along the first trenches, a source region of the first conductivity type formed along the second surface of the semiconductor between the first trenches, a source electrode joined to the source region, and a gate electrode adjacent to the control regions, (b) a pair of second trenches formed from the second surface of the semiconductor independently of the field effect transistor, (c) control regions of the second conductivity type formed along the second trenches, and (d) a diode having a junction formed on the second surface between the second trenches.
Abstract:
A communication system is provided including a transceiver and an application controller to transmit and receive signals through the transceiver. An isolator which insulates and separates the transceiver and application controller includes primary and secondary side circuits insulated from each other on a substrate and a capacitive insulating means to transfer signals between the primary and second sides while insulating and separating the primary side circuit from the secondary side circuit.
Abstract:
It is an object of the present invention to provide an integrated circuit device structured to uniformly apply a voltage to side oxide films formed in a trench at both sides in an SOI substrate.The semiconductor integrated circuit device of the present invention comprises a substrate which supports a first insulation layer below an active device region, trench formed in the active device region to come into contact with the first insulation layer, second insulation film formed on the trench side wall, polycrystalline silicon with which the trench is filled, and third insulation film formed on the polycrystalline silicon, wherein the thickness ratio of the third insulation film to the first insulation film is 0.25 or more to uniformly apply a voltage to the oxide insulation films formed in the trench at both sides.It is another object of the present invention to provide a dielectrically isolated semiconductor device of high reliability by realizing a fine and deep element isolating region which can prevent dislocation of an oxide film as an insulation layer by oxidation-induced stress. It is still another object to provide a process for fabrication of the above device.The dielectrically isolated semiconductor device of the present invention comprises a substrate supporting single-crystalline silicon via an oxide film (SOI substrate), the substrate supporting an active element layer deeper than an expanded distance of a depletion layer subjected to the highest voltage applied to the device, and element isolating region which encloses the active element layer. The element isolating region contains a deep trench which comes into contact with the insulation layer on the SOI substrate, and is filled with n heavily doped layers on both side walls, second insulation films each adjacent to the n heavily doped layer and polycrystalline semiconductor layer formed between the second insulation films.
Abstract:
A structure is provided that ensures a low on-resistance and a better blocking effect. In a lateral type SIT (Static Induction Transistor) in which a first region is used as a p+ gate and a gate electrode is formed on the bottom of the first region, the structure is built such that the p+ gate and an n+ source are contiguous. An insulating film is formed on the surface of an n− channel, and an auxiliary gate electrode is formed on the insulating film. In addition, the auxiliary gate electrode and the source electrode are shorted.