Abstract:
There is provided a coating composition capable of realizing a coating layer having conductivity and sufficient transparency. The coating composition contains respective components of a component (a) and a component (b) below, Component (a): acrylic resin or methane resin, Component (b): conductive polymer.
Abstract:
A distance measuring device using a multiple wave enables measurement of long distances with a high resolution and with a high precision by significantly reducing the circuit scale required for demultiplexing circuitry. A distance measuring device (1) includes an illumination unit (1) that illuminates using multiple modulated light having a plurality of frequencies satisfying a relationship in which one frequency is an even multiple of another frequency, a light receiving unit (20) that accumulates the charge of reflected light of the multiple modulated light into a plurality of accumulation units while switching an accumulation unit into which the charge is accumulated at a predetermined timing, and a distance calculation unit (30) that calculates a distance based on the charge.
Abstract:
An electro-oculography estimating device includes: a distance obtaining unit which obtains a right-eye corneal distance, a right-eye retinal distance, a left-eye corneal distance, and a left-eye retinal distance; and an electro-oculography theoretical value calculating unit which calculates an electro-oculography theoretical value generated at the given three-dimensional positions, based on the right-eye corneal distance, the right-eye retinal distance, the left-eye corneal distance, and the left-eye retinal distance that are obtained by the distance obtaining unit, as an input into an electro-oculography model that is a function for calculating the electro-oculography theoretical value generated in the given three-dimensional spatial position, based on the right-eye corneal distance, the right-eye retinal distance, the left-eye corneal distance, and the left-eye retinal distance.
Abstract:
An exhaust gas purifying apparatus for an internal combustion engine having a particulate filter provided in an exhaust system of the engine. Regeneration control is performed of burning particulates accumulated in the particulate filter. An oxygen concentration in exhaust gases flowing into the particulate filter is detected, and a flow rate of oxygen flowing into the particulate filter is calculated according to the detected oxygen concentration. An inflowing oxygen amount is calculated by integrating the oxygen flow rate when performing regeneration control. It is determined that an abnormality has occurred if the inflowing oxygen amount at a time when regeneration control ends is equal to or less than a predetermined amount.
Abstract:
A method for connecting an electronic part, which contains: mixing a dispersing solvent, an adhesive resin which is dissolved in the dispersing solvent, conductive particles, and insulating particles which have smaller particle diameters than those of the conductive particles so as to prepare an anisotropic conductive adhesive; placing a terminal of a substrate and a terminal of an electronic part so as to face each other via the anisotropic conductive adhesive, and applying heat and pressure to the substrate and the electronic part so as to sandwich the conductive particles between the terminal of the substrate and the terminal of the electronic part to thereby deform the conductive particles, in which the pressure is smaller than pressure at which the conductive particles are destroyed, and smaller than pressure at which the particle diameters of the conductive particles become equal to the particle diameters of the insulating particles.
Abstract:
The present invention provides a drawing machine and a game apparatus using the same by which it is easier to give the participants of the drawing an impression like drawing is carried out fairly when the computer drawing in which a winning-probability of each of drawing-objects is changed is carried out.A drawing machine for determining a winning-object from a plurality of drawing-objects includes: a winning-probability data storage unit for storing winning-probability data showing respective winning-probabilities of the plurality of drawing-objects; a drawing unit for carrying out a drawing in accordance with the winning-probability of each of the drawing-objects determined by the winning-probability data stored in the winning-probability data storage unit and determining a winning-object from the plurality of drawing-objects; a winning-probability data changing unit for changing the winning-probability data stored in the winning-probability data storage unit; a winning-probability image displaying unit for displaying a winning-probability image showing the winning-probability of each of the drawing-objects determined by the winning-probability data stored in the winning-probability data storage unit; and a winning-probability displaying control unit for changing the winning-probability image displayed on the winning-probability image displaying unit, when the winning-probability data changing unit changes the winning-probability data, so as to correspond to the changed winning-probability data.
Abstract:
A moderator temperature coefficient measuring device include a control rod driving device; a reactivity measurement processing unit capable of measuring the reactivity of the reactor; an inflow temperature sensor for sensing the inflow temperature of a reactor coolant flowing into the reactor; an outflow temperature sensor for sensing the outflow temperature of the reactor coolant flowing out of the reactor; an average temperature measurement processing unit for measuring the average temperature from the sensed inflow and outflow temperatures; an power control unit for providing control so that the reactor delivers constant thermal power; and a temperature coefficient calculating unit for calculating the temperature coefficient of the reactor coolant based on the amount of change in reactivity between before and after the insertion of the control rod and the amount of change in average temperature between before and after the insertion of the control rod under the constant thermal power.
Abstract:
An imaging apparatus captures a large dynamic range image of a scene including a backlit person with a blue sky background in a manner that the person's face has an appropriate luminance level without saturating the background sky. An imaging unit obtains analogue image signals through exposure control that prevents a highlight from being saturated, an A/D converter converts the analogue image signals to digital image signals, and a signal processing unit linearly increases the dynamic range of the digital image signals. The image signals with the increased dynamic range are nonlinearly compressed to have a dynamic range of 100% or less through nonlinear dynamic range compression that intensively compresses a highlight portion. The imaging apparatus with this structure first increases the dynamic range of an image and efficiently compresses the increased large dynamic range of the image.
Abstract:
A natural white balance is achieved in images that are captured while emitting a flash. The white balance of an image is adjusted using a WB adjustment portion and a mixture ratio calculation portion estimating a mixture ratio of an external light component and a flashed light component that are present in an image captured with emitting a flash, from the image obtained that is captured while emitting a flash and an image signal that is obtained without emitting a flash. Further, an external light WB coefficient determination portion determines an WB coefficient for the external light, a flashed light WB coefficient setting portion sets a WB coefficient for the flashed light, and a WB processing portion that continuously performs WB processing on the image captured while emitting a flash by using the mixture ratio as an interpolation ratio.
Abstract:
An electro-oculography measuring device includes: an electro-oculography measuring unit configured to measure an electro-oculography original signal; a view capturing unit configured to capture a view picture; a drift estimation processing unit configured to estimate a drift signal; and a subtractor which subtracts the drift signal from the electro-oculography original signal to output an electro-oculography signal, and the drift estimation processing unit includes: an electro-oculography change amount calculating unit configured to calculate an electro-oculography change amount; a motion vector estimating unit configured to estimate a motion vector of a moving object included in the view picture; a drift change amount estimating unit configured to estimate a drift change amount assuming that a change in a gaze direction follows a motion of the moving object; and a drift estimating unit configured to estimate the drift signal by adding the drift change amount to a past drift signal.