Abstract:
Fabrication of spacer supports for use in flat panel displays through a process which involves 1) depositing an insulating material on an electrode plate, 2) optionally, patterning a reflective material superjacent the insulating material, 3) irradiating the electrode plate, and thereby removing the exposed insulating material, 4) optionally, removing the reflective material, and thereby exposing the remaining insulative material which will serve as the spacer supports, after which the plate can be aligned with a complementary electrode plate, and a vacuum formed therebetween.
Abstract:
Fabrication of spacer supports for use in field emitter displays through a process which involves 1) forming a mold for the spacers in a substrate through the use of micro-saw technology, 2) filling the mold with a material that is selectively etchable with respect to the mold, 3) optionally, planarizing the excess material to the level of the mold using chemical mechanical planarization, 4) attaching the filled mold to one of the electrode plates of the field emitter display, and 5) etching away (removing) the mold, after which 6) the plate can be aligned with its complementary electrode plate, and 7) a vacuum formed.
Abstract:
A selective etching and chemical mechanical planarization process for the formation of self-aligned gate and focus ring structures surrounding an electron emission tip for use in field emission displays in which the emission tip is i) optionally sharpened through oxidation, ii) deposited with a first conformal layer, iii) deposited with a conductive material layer, iv) deposited with a second conformal insulating layer, v) deposited with a focus electrode ring material layer, vi) optionally deposited with a buffering material, vii) planarized with a chemical mechanical planarization (CMP) step, to expose a portion of the second conformal layer, viii) etched to form a self-aligned gate and focus ring, and thereby expose the emitter tip, afterwhich xi) the emitter tip may be coated with a low work function material.
Abstract:
An apparatus and method for stabilizing a threshold voltage in an active matrix field emission device are disclosed. The method includes formation of radiation-blocking elements between a cathodoluminescent display screen of an FED and semiconductor junctions formed on a baseplate of the FED.
Abstract:
According to one aspect of the invention, a field emission display is provided comprising: an anode; a phosphor screen located on the anode; a cathode; an evacuated space between the anode and the cathode; an emitter located on the cathode opposite the phosphor; wherein the emitter comprises an electropositive element both in a body of the emitter and on a surface of the emitter. According to another aspect of the invention, a process for manufacturing a FED is provided comprising the steps of forming an emitter comprising an electropositive element in the body of the tip; positioning the emitter in opposing relation to a phosphor display screen; creating an evacuated space between the emitter tip and the phosphor display screen; and causing the electropositive element to migrate to an emission surface of the emitter.
Abstract:
The disclosed method for forming a field emission display includes forming a cathode and an anode, forming a plurality of photoresist posts over the cathode, and coating the posts with a layer of coating material. The layer of coating material forms sidewalls around the posts. The photoresist posts may then be removed from within the sidewalls. The anode may then be fitted onto the sidewalls so that the sidewalls function as spacers in the field emission display.
Abstract:
A remote keyboard has keys which are illuminated for identification under a dim motherboard. For a first embodiment of the invention, the identifying symbol or symbols on each key cap of the keyboard is formed from luminescent material. Alternatively, the symbol or symbols on each key cap are formed from a translucent material in which tritium is embedded. Tritium, which has a half-life of about 12.5 years, emits low-energy beta particle radiation. The radiation, which is of sufficiently low energy that it may be blocked by a piece of paper, may be rendered innocuous by placing clear plastic radiation shields over each key cap. For a second embodiment of the invention, the key caps themselves are molded from luminescent material, while the symbols are formed from contrasting black or dark-colored non-luminescent material. A third embodiment of the invention utilizes fiber optics to convey light from at least one low-power source, such as a light-emitting diode, to each of the various key caps, each of which is molded from a translucent material. The symbols on the key caps are of a color which contrasts with that of the key caps. Black letters on light colored translucent key caps are the preferred combination. Another embodiment of the present invention for backlighting a keyboard is to use a transparent projector pane positioned beneath translucent or transparent key caps on which identifying symbols are printed. Light from a light source at the edge of the projector pane is transmitted throughout the pane. An aperture beneath each key top projects light up through the key caps, illuminating the symbols.
Abstract:
Electron emitters and a method of fabricating emitters which have a concentration gradient of impurities, such that the highest concentration of impurities is at the apex of the emitters, and decreases toward the base of the emitters. The method comprises the steps of doping, patterning, etching, and oxidizing the substrate, thereby forming the emitters having impurity gradients.
Abstract:
A substrate is placed on a charging surface, to which a first voltage is applied. Etch-resistant dry particles are placed in a cup in a nozzle to which a second voltage, less than the first voltage, is applied. A carrier gas is directed through the nozzle, which projects the dry particles out of the nozzle toward the substrate. The particles pick up a charge from the potential applied to the nozzle and are electrostatically attracted to the substrate. The particles adhere to the substrate, where they form an etch mask. The substrate is etched and the particles are removed. Emitter tips for a field emission display may be formed in the substrate.
Abstract:
Apparatus for ensuring that, in a portable, battery-powered communication package incorporating at least two communication devices, such as a combination cellular telephone and a pager, sufficient power is provided for extended operation of the communication device having the lowest continuous power consumption requirements when the device having a higher continuous power consumption rate has consumed a selected portion of the total power initially available to the combined devices.