Abstract:
A fiber optic cable that includes one or more optical fibers, and one or more strength members spanning the length of the cable. The cable also includes a protective jacket protecting the cable across all, or at least substantially all of its length. One or more ends of the cable (and potentially as much as the entire length of the cable), includes a jacket portion that surrounds the strength member(s), and a jacket portion that surrounds the optical fiber(s). These jacket portions are connected by a peelable separation portion. Accordingly, when the optical fiber portion of the jacket is pulled relative to the strength member portion of the jacket, the separation portion ruptures permitting the strength member portion and the optical fiber portion to be peeled away from each other. This allows for independent control of the termination of the strength member(s) relative to the optical fiber(s).
Abstract:
Methods of manufacturing optical transceiver modules using lead frame connectors that connect optical sub-assemblies to printed circuit boards. The lead frame connectors include a conductive lead structure that is encased in an insert injection molded plastic casing. The lead frame connector is aligned with the leads that protrude from the back end of the corresponding optical sub-assembly (OSA). The leads pass through corresponding holes in the lead frame connector and are soldered to the conductors of the lead frame assembly. Once the soldering has been performed, the combined OSA and lead frame connector becomes a surface mount device that can then be mounted to the PCB. Assembling an optical transceiver using the lead frame connectors is generally less expensive and more reliable compared to the use of conventional flexible printed circuit board connectors.
Abstract:
Exemplary embodiments of the present invention illustrate lead frame connectors for connecting optical sub-assemblies to printed circuit boards in optical transceiver modules. The lead frame connectors include a conductive lead structure that is encased in a plurality of polymer casings. The polymer casings provide electrical insulation for the conductors in the lead frame as well as mechanical support for the finished component. One or more passive components can mount to the conductors of the lead frame connector to aid with impedance matching between an optical sub-assembly, the lead frame connector, and the printed circuit board. The lead frame connectors connect to the leads associated with the optical sub-assemblies and are surface mounted onto the printed circuit board to establish connectivity between the optical sub-assembly and the printed circuit board.
Abstract:
An edge connector suitable for attachment with a printed circuit board. The edge connector comprises a body composed of a plastic resin, the body defining a first end that is configured to operably attach to a portion of a printed circuit board and a second end configured to operably connect to a slot in a host device and a plurality of conductive traces and contact pads defined on a portion of a surface of the body, the traces being configured to electrically connect with corresponding traces defined on the printed circuit board.
Abstract:
Flexible printed circuit boards interconnect to adjacent electronic devices through one or more of high speed data, low speed data, high current, and ground lines and pads. The design of the high speed data pads and traces and adjacent ground pads and traces maintains a desired impedance in the flexible circuit and at the transition from the flexible circuit to a printed circuit board, a ceramic header, or other device to ensure high speed operation. The pads are preferably arranged in a two dimensional geometry such that a connecting area of the flexible circuit is narrower than it would preferably be if the pads were arranged linearly. The two dimensional array also allows the use of the high current thermoelectric cooler pads, which require large surface areas that may otherwise not fit in a conventional linear array.
Abstract:
Methods for assembly of optical transceivers. In one example, the method is performed in connection with an optical transceiver that includes a transmitter optical subassembly and a receiver optical subassembly, as well as structure that defines a pair of ports with which the transmitter optical subassembly and receiver optical subassembly, respectively, are to be aligned. This example of the method involves positioning the transmitter optical subassembly and the receiver optical subassembly in a desired position relative to each other. The transmitter optical subassembly and the receiver optical subassembly are then fixed in the desired position. Next, the transmitter optical subassembly is aligned with one of the ports, and the receiver optical subassembly is aligned with the other port. The alignment of both the transmitter optical subassembly and the receiver optical subassembly with their respective ports is performed in a single operation.
Abstract:
In one example embodiment, a collar clip includes a body that is sized and configured to partially encircle a shell of an optoelectronic transceiver module. Each extended element in a pair of the extended elements is separated from the other extended element in the pair by a cavity. Each cavity is configured to receive a portion of a corresponding structure of the shell.
Abstract:
A module that includes a housing and a latch assembly at least partially positioned within the housing. The latch assembly has first and second associated states, and includes an actuation sleeve having a first position that corresponds with the first state, and a second position that corresponds with the second state. The latch assembly further includes first and second latch arms operably disposed with respect to the actuation sleeve so that respective first and second cam arrangements are defined where the latch arms are responsive to motion of the actuation sleeve. The latch arms partially extend from the housing when the actuation sleeve is in the first position, and the latch arms are substantially retracted within the housing when the actuation sleeve is in the second position.
Abstract:
Integrated optical subassemblies (OSA) such as integrated transmit and receive optical subassemblies that may be implemented with an optical transceiver module that includes a molded body. The integrated OSA includes a mounting surface defined on a vertical portion of the molded body, a wall extending about the mounting surface, at least one optoelectronic device, such as a laser diode or a photodiode mounted on a transimpendence amplifier, positioned on the mounting surface, a plurality of bond pads included on the mounting surface in electrical connection with the at least one optoelectronic device, a plurality of conductive feedthroughs defined through the mounting surface, each feedthrough being in electrical communication with a corresponding one of the bond pads; and an optical fiber port that engages the wall extending about the mounting surface, wherein the optical fiber port is configured for receiving an optical fiber cable.
Abstract:
An optical connector latch assembly for an optoelectronic module that can releasably engage an optical fiber connector that is received in a receptacle of the optoelectronic module. In one example embodiment, an optical connector latch arm includes a base, a shaft extending from the base, and a hook extending from the shaft. In this example embodiment, the base defines a complementary structure that is configured to engage a complementary structure of an OSA connector block. Also, the hook is configured to releasably engage an optical fiber connector.