摘要:
A method of manufacturing a semiconductor device is provided comprising the steps of: (a) forming a semiconductor element on a substrate, the semiconductor element having at least one nickel silicide contact region, a first etch stop layer formed over the element and an insulating layer formed over the first etch stop layer; (b) forming an opening through the insulating layer over the contact region at least to the first etch stop layer; (c) removing a portion of the first etch stop layer contacting a selected contact region using a process that does not substantially oxidize with the contact region, to form a contact opening to the contact region; and (d) filling the contact opening with conductive material to form a contact.
摘要:
A method of optimizing the formation of nickel silicide on regions of a MOSFET structure, has been developed. The method features formation of nickel silicide using an anneal procedure performed at a temperature below which nickel silicide instability and agglomeration occurs. A thin titanium interlayer is first formed on the MOSFET structure prior to nickel deposition, allowing an anneal procedure, performed after nickel deposition, to successfully form nickel silicide at a temperature of about 400° C. To obtain the desired conformality and thickness uniformity the thin titanium interlayer is formed via an atomic layer deposition procedure.
摘要:
This invention relates to treating inflammatory and immune diseases with certain aminoquinoline compounds that bind to CXCR3 receptors. The aminoquinoline compounds are covered by the formula (I) shown below. Each variable is defined in the specification.
摘要:
A method of forming MOS devices is provided. The method includes providing a semiconductor substrate, forming a gate dielectric over the semiconductor substrate, forming a gate electrode over the gate dielectric, forming a source/drain region in the semiconductor substrate, forming an additional layer, preferably by epitaxial growth, on the source/drain region, and siliciding at least a top portion of the additional layer. The additional layer compensates for at least a portion of the semiconductor material lost during manufacturing processes and increases the distance between the source/drain silicide and the substrate. As a result, the leakage current is reduced. A transistor formed using the preferred embodiment preferably includes a silicide over the gate electrode wherein the silicide extends beyond a sidewall boundary of the gate electrode.
摘要:
A semiconductor method of manufacture involving suicides is provided. Embodiments comprise forming a stacked arrangement of layers, the stacked arrangement of layers comprising an additive layer on a substrate, and a metal layer on the additive layer, annealing the stacked arrangement of layers to form a metal silicide layer on the substrate, wherein the metal silicide layer includes an additive from the additive layer. Alternative embodiments include etching the stacked arrangement of layers to remove an unreacted material layer. In an alternative embodiment, the stacked arrangement of layer comprises a metal layer on a substrate, an additive layer on the metal layer, and an optional oxygen barrier layer on the additive layer. An annealing process forms a metal silicide containing an additive. Metal silicides formed according to embodiments are particularly resistant to agglomeration during high temperature processing.
摘要:
Deep silicidation of a polysilicon gate electrode following high temperature annealing of a source/drain under the gate may damage the gate oxide. This damage is prevented by forming the gate electrode as two polysilicon layers separated by a chemical oxide. During annealing the chemical oxide prevents the grains of one polysilicon layer from merging with the grains of the other polysilicon layer. Thereafter, silicidation is substantially confined to the top polysilicon layer, the low resistance of which shunts the bottom polysilicon layer through the chemical oxide.
摘要:
A method of forming a silicided gate of a field effect transistor on a substrate having active regions is provided. The method includes the following steps: (a) forming a silicide in at least a first portion of a gate; (b) after step (a), depositing a metal over the active regions and said gate; and (c) annealing to cause the metal to react to form silicide in the active regions, wherein the thickness of said gate silicide is greater than the thickness of said silicide in said active regions.
摘要:
A method of manufacturing a semiconductor device is provided comprising the steps of: (a) forming a semiconductor element on a substrate, the semiconductor element having at least one nickel silicide contact region, a first etch stop layer formed over the element and an insulating layer formed over the first etch stop layer; (b) forming an opening through the insulating layer over the contact region at least to the first etch stop layer; (c) removing a portion of the first etch stop layer contacting a selected contact region using a process that does not substantially oxidize with the contact region, to form a contact opening to the contact region; and (d) filling the contact opening with conductive material to form a contact.
摘要:
A process for reducing the thermal budget and enhancing stability in the thermal budget of a metal salicide process used in the formation of metal salicides on substrates, thus eliminating or reducing salicide spiking and junction leakage in microelectronic devices fabricated on the substrates. According to a typical embodiment, a substrate is cooled to a sub-processing temperature which is lower than the metal deposition processing temperature and the salicide-forming metal is deposited onto the reduced-temperature substrate.
摘要:
Alternate methods of forming low resistance “hatted” polysilicon gate elements are provided that increase the effective area in the polysilicon gate for silicide grain growth during silicide formation. The expanded top portion helps to prevent silicide agglomeration in the silicide regions, thereby maintaining or reducing electrode resistance, improving high-frequency performance, and reducing gate delay in sub micron FET ULSI devices, without increasing the underlying active channel length.