摘要:
A self-aligned silicide method for integrated circuit and semiconductor device fabrication wherein a metal layer is formed over one or more silicon regions of a substrate and a barrier metal layer is formed over the metal layer using a chemical vapor deposition process. The temperature at which the chemical vapor deposition process is performed causes the metal layer to react with the one or more silicon regions of the substrate to form a metal-silicide film over each of the silicon regions.
摘要:
A method of forming a silicided gate of a field effect transistor on a substrate having active regions is provided. The method includes the following steps: (a) forming a silicide in at least a first portion of a gate; (b) after step (a), depositing a metal over the active regions and said gate; and (c) annealing to cause the metal to react to form silicide in the active regions, wherein the thickness of said gate silicide is greater than the thickness of said silicide in said active regions.
摘要:
A process for reducing the thermal budget and enhancing stability in the thermal budget of a metal salicide process used in the formation of metal salicides on substrates, thus eliminating or reducing salicide spiking and junction leakage in microelectronic devices fabricated on the substrates. According to a typical embodiment, a substrate is cooled to a sub-processing temperature which is lower than the metal deposition processing temperature and the salicide-forming metal is deposited onto the reduced-temperature substrate.
摘要:
A method of forming a silicided gate of a field effect transistor on a substrate having active regions is provided. The method includes the following steps: (a) forming a silicide in at least a first portion of a gate; (b) after step (a), depositing a metal over the active regions and said gate; and (c) annealing to cause the metal to react to form silicide in the active regions, wherein the thickness of said gate silicide is greater than the thickness of said silicide in said active regions.
摘要:
A method of forming a silicided gate on a substrate having active regions, comprising the steps of: forming a first silicide in the active regions from a first material; and forming a second silicide in the gate from a second material, wherein the first silicide forms a barrier against the second material forming a silicide in the active regions during the second silicide forming step, wherein said second silicide is thicker than said first silicide.
摘要:
A method of forming a silicided gate on a substrate having active regions, comprising the steps of: forming a first silicide in the active regions from a first material; and forming a second silicide in the gate from a second material, wherein the first silicide forms a barrier against the second material forming a silicide in the active regions during the second silicide forming step, wherein said second silicide is thicker than said first silicide.
摘要:
A method of manufacturing a microelectronic device including forming a dielectric layer surrounding a dummy feature located over a substrate, removing the dummy feature to form an opening in the dielectric layer, and forming a metal-silicide layer conforming to the opening by a metal deposition process employing a target which includes metal and silicon. The metal-silicide layer may then be annealed.
摘要:
A method of manufacturing a microelectronic device including forming a dielectric layer surrounding a dummy feature located over a substrate, removing the dummy feature to form an opening in the dielectric layer, and forming a metal-silicide layer conforming to the opening. The metal-silicide layer may then be annealed.
摘要:
A method of manufacturing a microelectronic device including forming an opening in a dielectric layer located over a substrate, forming a semi-conductive layer substantially conforming to the opening, and forming a conductive layer substantially conforming to the semi-conductive layer. At least a portion of the semi-conductive layer is doped by implanting through the conductive layer. The semi-conductive layer and the conductive layer may then be annealed.
摘要:
A method of manufacturing a semiconductor device is provided. A semiconductor element is formed on a substrate. The semiconductor element has at least one nickel silicide contact region, an etch stop layer formed over said element, and an insulating layer formed over said etch stop layer. A portion of the etch stop layer immediately over a selected contact region is removed using a process that does not substantially react with the contact region, to form a contact opening. The contact opening is then filled with a conductive material to form a contact.