摘要:
In one embodiment, the invention provides a method for fabricating a microelectromechanical systems device. The method comprises fabricating a first layer comprising a film having a characteristic electromechanical response, and a characteristic optical response, wherein the characteristic optical response is desirable and the characteristic electromechanical response is undesirable; and modifying the characteristic electromechanical response of the first layer by at least reducing charge build up thereon during activation of the microelectromechanical systems device.
摘要:
MEMS switches are formed with membranes or layers that are deformable upon the application of a voltage. The MEMS switches may comprise compliant terminals and/or contact conductors to produce contact swiping.
摘要:
A method of manufacturing a microelectromechanical device includes forming at least two conductive layers on a substrate. An isolation layer is formed between the two conductive layers. The conductive layers are electrically coupled together and then the isolation layer is removed to form a gap between the conductive layers. The electrical coupling of the layers mitigates or eliminates the effects of electrostatic charge build up on the device during the removal process.
摘要:
Described herein is the use of a diffusion barrier layer between metallic layers in MEMS devices. The diffusion barrier layer prevents mixing of the two metals, which can alter desired physical characteristics and complicate processing. In one example, the diffusion barrier layer may be used as part of a movable reflective structure in interferometric modulators.
摘要:
Methods of making MEMS devices including interferometric modulators involve depositing various layers, including stationary layers, movable layers and sacrificial layers, on a substrate. A non-planar surface is formed on one or more layers by flowing an etchant through a permeable layer. In one embodiment the non-planar surface is formed on a sacrificial layer. A movable layer formed over the non-planar surface of the sacrificial layer results in a non-planar interface between the sacrificial and movable layers. Removal of the sacrificial layer results in a released MEMS device having reduced contact area between the movable and stationary layers when the MEMS device is actuated. The reduced contact area results in lower adhesion forces and reduced stiction during actuation of the MEMS device. These methods may be used to manufacture released and unreleased interferometric modulators.
摘要:
A microelectromechanical systems device having an electrical interconnect between circuitry outside the device and at least one of an electrode and a movable layer within the device. At least a portion of the electrical interconnect is formed from the same material as a conductive layer between the electrode and a mechanical layer of the device. In an embodiment, this conductive layer is a sacrificial layer that is subsequently removed to form a cavity between the electrode and the movable layer. The sacrificial layer is preferably formed of molybdenum, doped silicon, tungsten, or titanium. According to another embodiment, the conductive layer is a movable reflective layer that preferably comprises aluminum.
摘要:
Embodiments of the present disclosure include a method of fabricating interferometric devices using lift-off processing techniques. Use of lift-off processing in the fabrication of various layers of interferometric modulators, such as an optical stack or a flex layer, advantageously avoids individualized chemistries associated with the plurality of materials associated with each layer thereof. Moreover, use of lift-off processing allows much greater selection in both materials and facilities available for fabrication of interferometric modulators.
摘要:
Embodiments of the present invention relate to interferometric display devices comprising an interferometric modulator and a solar cell and methods of making thereof. In some embodiments, the solar cell is configured to provide energy to the interferometric modulator. The solar cell and the interferometric modulator may be formed above the same substrate. A layer of the solar cell may be shared with a layer of the interferometric modulator.
摘要:
A microelectromechanical system (MEMS) device includes a reflective element that includes at least one stop member. The device also includes an electrode and an aperture that extends at least partially through the electrode. The aperture has a boundary. The device has an electrically nonconductive surface within the aperture or on a portion of the boundary of the aperture. A support structure separates the reflective element from the electrode. The reflective element can be moved between a first position and a second position. The stop member is spaced from the electrically nonconductive surface when the reflective element is in the first position. A portion of the stop member is in contact with the electrically nonconductive surface when the reflective element is in the second position. The reflective element and the electrode are electrically isolated from each other when the reflective element is in the second position.
摘要:
A spatial light modulator comprises an integrated optical compensation structure, e.g., an optical compensation structure arranged between a substrate and a plurality of individually addressable light-modulating elements, or an optical compensation structure located on the opposite side of the light-modulating elements from the substrate. The individually addressable light-modulating elements are configured to modulate light transmitted through or reflected from the transparent substrate. Methods for making such spatial light modulators involve fabricating an optical compensation structure over a substrate and fabricating a plurality of individually addressable light-modulating elements over the optical compensation structure. The optical compensation structure may be a passive optical compensation structure. The optical compensation structure may include one or more of a supplemental frontlighting source, a diffuser, a black mask, a diffractive optical element, a color filter, an anti-reflective layer, a structure that scatters light, a microlens array, and a holographic film.