Abstract:
A method for operating a motor vehicle which has a drive and an exhaust system with at least one controllable heating device to be placed in contact with exhaust gas, includes at least the following steps: (a) detecting at least one operating parameter of the exhaust system, (b) determining at least one influential variable of the heating device, (c) comparing the at least one influential variable with a target parameter of the exhaust system, and (d) activating the heating device in such a way that the operating parameter reaches the target parameter. A motor vehicle having a drive and an exhaust system is also provided.
Abstract:
A method for gluing and brazing a honeycomb structure includes at least one partially structured foil with a pitch and a wave height. The method includes the steps of choosing a mean brazing material diameter of a powder brazing material, said diameter being 15% smaller than the height of the wave; determining a minimum thickness of the glue strip according to equation; gluing at least partially structured foil within the width of the glue strip on at least part of the wave crests formed by the undulation; brazing the honeycomb structure. The invention also relates to a corresponding honeycomb structure that ensures satisfactory joint connections even when said structure is used in the exhaust systems of automobiles.
Abstract:
A process produces structures which are superimposed on one another in a metal foil section. The process includes producing a primary structure using a first tool, and transferring the metal foil section to a second tool, the second tool having at least one shaping profiled roller which is responsible for transferring the metal foil section. A secondary structure is produced using the second tool. A spatial position of the primary structure and the secondary structure is determined in at least one subregion of the metal foil section. An incorrect position is detected and an operating parameter of the at least one profiled roller is adapted in dependence on the detected incorrect position. An apparatus is suitable for this process and produces metal foils which are suitable for the production of catalyst support bodies that can be used in exhaust systems of internal combustion engines.
Abstract:
An exhaust gas system for converting harmful substances of an exhaust gas of a mobile internal combustion engine includes at least one reducing agent feed, a catalytic converter, a filter element and an exhaust pipe. The reducing agent feed opens into the exhaust pipe upstream of the filter element, while the catalytic converter is disposed downstream of the filter element, as seen in exhaust gas flow direction. Additional components, such as a mixer, a pre-catalytic converter and a heating element, etc. used for purifying exhaust gas, may also be advantageously integrated into the system.
Abstract:
An exhaust gas filter for cleaning an exhaust gas of an internal combustion engine includes at least one strip-shaped filter layer made of a material through which a fluid can at least partly flow. The filter layer has a length in a longitudinal direction and a width in a transverse direction. The filter layer has a metallic reinforcing region at least in a partial region. The metallic reinforcing region has a width and a length. The width of the reinforcing region is less than the width of the filter layer and/or the length of the reinforcing region is less than the length of the filter layer. A method for producing a filter layer for an exhaust gas filter is also provided.
Abstract:
A method for manufacturing an exhaust gas treatment component having at least one structured piece of sheet metal, includes shaping the at least one piece of sheet metal with at least one fluid stream. A device for producing a structured piece of sheet metal is also provided.
Abstract:
An exhaust gas system for converting harmful substances of an exhaust gas of a mobile internal combustion engine includes at least one reducing agent feed, a catalytic converter, a filter element and an exhaust pipe. The reducing agent feed opens into the exhaust pipe upstream of the filter element, while the catalytic converter is disposed downstream of the filter element, as seen in exhaust gas flow direction. Additional components, such as a mixer, a pre-catalytic converter and a heating element, etc. used for purifying exhaust gas, may also be advantageously integrated into the system.
Abstract:
A device is configured to catalytically reduce internal combustion engine exhaust gases which contain nitrogen oxides. The device has an exhaust pipe, one end of which can be connected to at least one exhaust outlet of the internal combustion engine. A reducing agent, in particular urea, is introduced into the exhaust pipe with a feed device. At least one mixer is arranged downstream of the reducing agent injection, as seen in the flow direction of the exhaust gas. The mixer has a multiplicity of passages through which the fluid can flow. At least one catalytic converter is arranged downstream of the mixer. At least one diffuser is located between the mixer and the converter. The diffuser which has a multiplicity of passages through which the exhaust gas can flow and which have a cross section which increases in the flow direction.