摘要:
A method of fabricating an air-gap spacer of a semiconductor device, comprising the following steps. A semiconductor substrate having at least a pair of STIs defining an active region is provided. A gate electrode is formed on the substrate within the active region. The gate electrode having an underlying gate dielectric layer. A liner oxide layer is formed over the structure, covering the sidewalls of the gate dielectric layer, the gate electrode, and over the top surface of the gate electrode. A liner nitride layer is formed over the liner oxide layer. A thick oxide layer is formed over the structure. The thick oxide, liner nitride, and liner oxide layers are planarized level with the top surface of the gate electrode, and exposing the liner oxide layer at either side of the gate electrode. The planarized thick oxide layer is removed with a portion of the liner oxide layer and a portion of the gate dielectric layer under the gate electrode to form a cross-section inverted T-shaped opening on either side of the gate electrode. A gate spacer oxide layer is formed over the structure at least as thick as the gate electrode, wherein the gate spacer oxide layer partially fills the inverted T-shaped opening from the top down and wherein air gap spacers are formed proximate the bottom of the inverted T-shaped opening. The gate spacer oxide, liner nitride, and liner oxide layers are etched to form gate spacers proximate the gate electrode. The gate spacers having an underlying etched liner nitride layer and liner oxide layer.
摘要:
A method of fabricating a vertical channel transistor, comprising the following steps. A semiconductor substrate having an upper surface is provided. A high doped N-type lower epitaxial silicon layer is formed on the semiconductor substrate. A low doped P-type middle epitaxial silicon layer is formed on the lower epitaxial silicon layer. A high doped N-type upper epitaxial silicon layer is formed on the middle epitaxial silicon layer. The lower, middle, and upper epitaxial silicon layers are etched to form a epitaxial layer stack defined by isolation trenches. Oxide is formed within the isolation trenches. The oxide is etched to form a gate trench within one of the isolation trenches exposing a sidewall of the epitaxial layer stack facing the gate trench. Multi-quantum wells or a stained-layer super lattice is formed on the exposed epitaxial layer stack sidewall. A gate dielectric layer is formed on the multi-quantum wells or the stained-layer super lattice and within the gate trench. A gate conductor layer is formed on the gate dielectric layer, filling the gate trench.
摘要:
A method for a vertical transistor by selective epi deposition to form the conductive source, drain, and channel layers. The conductive source, drain, and channel layers are preferably formed by a selective epi process. Dielectric masks define the conductive layers and make areas to form vertical contacts to the conductive S/D and channel layers.
摘要:
A method for forming an RF inductor of helical shape having high Q and minimum area. The inductor is fabricated of metal or damascened linear segments formed on three levels of intermetal dielectric layers and interconnected by metal filled vias to form the complete helical shape with electrical continuity.
摘要:
Low current leakage DRAM structures are achieved using a selective silicon epitaxial growth over an insulating layer on memory cell (device) areas. An insulating layer, that also serves as a stress-release layer, and a Si3N4 hard mask are patterned to leave portions over the memory cell areas. Shallow trenches are etched in the substrate and filled with a CVD oxide which is polished back to the hard mask to form shallow trench isolation (STI) around the memory cell areas. The hard mask is selectively removed to form recesses in the STI aligned over the memory cell areas exposing the underlying insulating layer. Openings are etched in the insulating layer to provide a silicon-seed surface from which is grown a selective epitaxial layer extending over the insulating layer within the recesses. After growing a gate oxide on the epitaxial layer, FETs and DRAM capacitors can be formed on the epitaxial layer. The insulating layer under the epitaxial layer drastically reduces the capacitor leakage current and improves DRAM device performance. This self-aligning method also increases memory cell density, and is integratable into current DRAM processes to reduce cost.
摘要:
A method for forming uniform ultrathin silicide features in the fabrication of an integrated circuit is described. A metal layer is deposited over the surface of a silicon semiconductor substrate. An array of heated metallic tips contact the metal layer whereby the metal layer is transformed to a metal silicide where it is contacted by the metallic tips and wherein the metal layer not contacted by the metallic tips is unreacted. The unreacted metal layer is removed leaving the metal silicide as uniform ultrathin silicide features. Alternatively, a metal acetate layer is spin-coated over the surface of a silicon semiconductor substrate. An array of heated metallic tips contacts the metal acetate layer whereby the metal acetate layer is transformed to a metal silicide where the metallic tips contact the metal acetate layer and wherein the metal acetate slayer not contacted by the metallic tips is unreacted. Or the metal acetate layer is heat treated at localized regions using a multi-array of tips aligned in a specific layout. Or the metal acetate layer is contacted by heated metallic tips under vacuum so that the metal does not oxidize. The unreacted metal acetate layer is removed leaving the metal silicide as the uniform ultrathin silicide features.
摘要:
A new method is provided for the creation of contact pads to the poly gate of MOS devices. STI regions are formed, layers of gate oxide, poly and SiN are deposited. The poly gate is patterned and etched leaving a layer of SiN on the surface of the gate. An oxide liner is created, an LDD implant is performed, the gate spacers are created and source/drain region implants are performed. A layer of titanium is deposited and annealed, a salicide etchback is performed to the layer of titanium creating silicided surfaces over the source and drain regions. Inter level dielectric (ILD) is deposited, the layer of ILD is polished down to the SiN layer on the top surface of the gate. The layer of SiN is removed creating a recessed gate structure. A stack of layers of titanium-amorphous silicon-titanium (Ti/Si/Ti) or a layer of WSix is deposited over the layer of ILD filling the recess on top of the gate with Ti/Si/Ti. This Ti/Si/Ti (or WSix) is patterned and etched forming a Ti/Si/Ti stack (or layer of WSix) that partially overlays the layer of ILD while also penetrating the recessed opening of the gate electrode. The layer of Ti/Si/Ti is silicided and forms the contact pad to the gate structure.
摘要翻译:提供了一种用于向MOS器件的多晶硅栅极创建接触焊盘的新方法。 形成STI区,沉积栅氧化层,聚和SiN层。 多晶硅栅极被图案化和蚀刻,在栅极的表面上留下一层SiN层。 产生氧化物衬垫,执行LDD注入,产生栅极间隔物并执行源极/漏极区域注入。 沉积并退火一层钛,对源层和漏极区产生硅化表面的钛层进行自对准硅蚀刻蚀刻。 层间电介质(ILD)被沉积,ILD层被抛光到栅极顶表面上的SiN层。 去除SiN层,产生凹陷的栅极结构。 在TiD / Si / Ti上在栅极顶部填充凹槽的ILD层上沉积一叠钛 - 非晶硅 - 钛(Ti / Si / Ti)或一层WSix层。 该Ti / Si / Ti(或WSix)被图案化和蚀刻形成Ti / Si / Ti叠层(或WSix层),其部分覆盖ILD层,同时也穿过栅电极的凹入开口。 Ti / Si / Ti层被硅化并形成与栅极结构的接触焊盘。
摘要:
Formation of a MOSFET with a polysilicon gate electrode embedded within a silicon trench is described. The MOSFET retains all the features of conventional MOSFETs with photolithographically patterned polysilicon gate electrodes, including robust LDD (lightly doped drain) regions formed in along the walls of the trench. Because the gate dielectric is never exposed to plasma etching or aqueous chemical etching, gate dielectric films of under 100 Angstroms may be formed without defects. The problems of over etching, and substrate spiking which are encountered in the manufacture of photolithographically patterned polysilicon gate electrodes do not occur. The entire process utilizes only two photolithographic steps. The first step defines the silicon active area by patterning a field isolation and the second defines a trench within the active area wherein the device is formed. The new process, uses the same total number of photolithographic steps to form the MOSFET device elements as a conventional process but is far more protective of the thin gate oxide.
摘要:
A method for the formation of an air gap structure for use in inter-metal applications. A metal pattern of metal lines is formed, a layer of Plasma Polymerized Methylsilane (PPMS) resist is deposited on top of this pattern. The surface of the PPMS resist is subjected to selective exposure. The unexposed PPMS is removed after which the process is completed by closing up the openings within the PPMS.
摘要:
A method of fabricating single and dual damascene copper interconnects is achieved. A semiconductor substrate layer is provided. Conductive traces are provided in an isolating dielectric layer. An intermetal dielectric layer is deposited overlying the conductive traces and the isolating dielectric layer. The intermetal dielectric layer is patterned to form trenches to expose the top surfaces of the underlying conductive traces. A barrier layer is deposited overlying the intermetal dielectric layer, the exposed conductive traces, and within the trenches. A platinum ionic seed solution is coated inside the trenches and overlying the barrier layer. A platinum seed layer is deposited from the ionic seed solution by exposing the platinum ionic seed solution to ultraviolet light. A copper layer is deposited by electroless plating to form copper interconnects, where the copper layer is only deposited overlying the platinum seed layer in the trenches, and where the deposition stops before the copper layer fills the trenches. The exposed barrier layer is polished down to the top surface of the intermetal dielectric layer. An encapsulation layer is deposited overlying the copper interconnects and the intermetal dielectric layer to complete the fabrication of the integrated circuit device.