摘要:
A method of assembling an integrated circuit (IC) device includes the steps of providing a lead frame or substrate panel, attaching a semiconductor die to the lead frame or substrate panel and electrically coupling the die to the lead frame or substrate panel. The method further includes encapsulating the die with a first encapsulant, and the encapsulating the first encapsulant with a second encapsulant where the second encapsulant includes a material that provides electromagnetic shielding.
摘要:
A lead frame has a flag, a peripheral frame, and main tie bars coupling the flag to the peripheral frame. At least one cross tie bar extends between two of the main tie bars and an inner row of external connector pads extending from an inner side of the cross tie bar and an outer row of external connector pads extending from an outer side of the cross tie bar. Both an inner non-electrically conductive support bar and an outer non-electrically conductive support bar are attached across the two of the main tie bars. The inner non-electrically conductive support bar is attached to upper surfaces of the two of the main tie bars and to upper surfaces of the inner row of the external connector pads.
摘要:
A method of packaging a power semiconductor die includes providing a first lead frame of a dual gauge lead frame. The first lead frame includes a thick die pad. A tape is attached to a first side of the thick die pad and the power die is attached to a second side of the thick die pad. A second lead frame of the dual gauge lead frame is provided. The second lead frame has thin lead fingers. One end of the lead fingers is attached to an active surface of the power die such that the lead fingers are electrically connected to bonding pads of the power die. A molding compound is then dispensed onto a top surface of the dual gauge lead frame such that the molding compound covers the power die and the lead fingers.
摘要:
A method and system provide a magnetic transducer that includes an underlayer. The method and system include providing a recessed region in the underlayer. The recessed region includes a front having an angle from horizontal. The angle is greater than zero and less than ninety degrees. The method and system further includes providing an assist pole layer in the recessed region and providing a main pole layer. A portion of the main pole layer resides on the assist pole layer. A main pole is defined from the assist pole layer and the main pole layer.
摘要:
A perpendicular magnetic recording (PMR) head is fabricated with a tapered main pole having a variable thickness. The tapered portion of the pole is at the ABS tip and it can be formed by bevels at the leading or trailing edges or both. The taper terminates to form a region with a maximum thickness, t1, which extends for a certain distance proximally. Beyond this region of maximum thickness t1, the pole is then reduced to a constant minimum thickness t2. A yoke is attached to this region of constant minimum thickness. This pole design requires less flux because of the thinner region of the pole where it attaches to the yoke, but the thicker region just before the tapered ABS provides additional flux to drive the pole just before the ABS, so that high definition and field gain is achieved, yet fringing is significantly reduced.
摘要:
A perpendicular magnetic recording (PMR) head is fabricated with a configuration of leading edge shields and trailing edge shields that reduce the leakage of flux between the main pole and the shields. The reduction of leakage is achieved by eliminating the sharp 90° corner between the backside surfaces of the shields and the surfaces adjacent to the main pole. In one embodiment the corner is replaced by two successive acute angles, in another embodiment it is replaced by a rounded surface. In a final embodiment, leakage between the pole and trailing edge shield is achieved by shortening the length of the write gap by forming the shield with a double taper.
摘要:
A perpendicular magnetic recording (PMR) head is fabricated with a pole tip shielded laterally by a graded side shield that is conformal to the shape of the pole tip at an upper portion of the shield but not conformal to the pole tip at a lower portion. The shield includes a trailing shield, that is conformal to the trailing edge of the pole tip and may include a leading edge shield that magnetically connects two bottom ends of the graded side shield.
摘要:
A process (and the structure resulting therefrom) is described for manufacturing a magnetic write head in which there is no physical interface between the first and second trailing shields. This is achieved by the introduction of a sacrificial layer immediately after the top yoke plating has been done and its photoresist mold has been stripped.
摘要:
A PMR writer having a trailing shield structure is disclosed in which a flux choking layer (FCL) formed adjacent to the ABS provides a means to limit the amount of flux flowing from the trailing shield to a first write shield (WS1) near the write pole tip thereby significantly reducing adjacent track erasure. The FCL has a substantially smaller thickness than a top section of the trailing shield to which it is attached along a side opposite the ABS. As a result, pole tip protrusion is reduced compared to prior art PMR writers. The FCL contacts a trailing side of WS1 at the ABS and one or both of the trailing sides of the WS1 and FCL may be tapered or perpendicular with respect to the ABS. The top trailing shield section, FCL, and WS1 may be comprised of NiFe, CoFe, CoFeNi, or alloys thereof.
摘要:
A main pole layer with a tapered trailing side is disclosed that has three sections each with a write pole portion along the ABS and a yoke portion. A lower section has a bottom surface including a leading edge at the write pole tip and sidewalls with a bevel angle between 4 and 20 degrees. The middle section has essentially vertical sidewalls with a tapered side starting at the trailing edge and extending to a back side of the write pole and into the yoke. An upper section includes a portion of the tapered side and a top surface of the main pole layer and has a sidewall with a bevel angle from 0 to 45 degrees. The thickness of the middle section is greater than the pole height variation caused by variations in back end processes including ion milling and lapping to reduce erase width (EW) variations.