Abstract:
There are provided a multilayer ceramic electronic component and a method of manufacturing the same. Here, an average diameter (Dc) of ceramic grains in a cover area is smaller than an average diameter (Da) of ceramic grains in the active area, and when a thickness of the cover area is expressed by Tc, 9 um≦Tc≦25 um and Tc/Dc≧55 are satisfied. A multilayer ceramic capacitor having excellent moisture-resistance properties may be obtained.
Abstract:
There is provided a multilayer ceramic electronic part, including: a ceramic element having a plurality of dielectric layers laminated therein; and a plurality of first and second internal electrodes each including a body part formed on at least one surface of each of the plurality of dielectric layers within the ceramic element, the first and second internal electrodes including first and second lead parts extended from one surfaces of the body parts to be exposed through one surface of the ceramic element, respectively, wherein inside connection portions between the body parts and the first and second lead parts are curvedly formed, and have a curvature radius of 30 to 100 μm.
Abstract:
A multilayer capacitor and a board having the same includes external electrodes and internal electrodes. The external electrodes include connection portions formed on a mounting surface of a capacitor body and band portions formed on side surfaces of the capacitor body, and the internal electrodes include body portions overlapping each other and lead portions extended from the body portions to the mounting surface of the capacitor body, to thereby be connected to the connection portions of the external electrodes. The body portions are formed to be spaced apart from virtual lines connecting distal ends of the connection portions and distal ends of the band portions to each other.
Abstract:
There is provided a multilayered ceramic capacitor, including: a ceramic body; an active layer including a plurality of first and second internal electrodes; an upper cover layer; a lower cover layer formed below the active layer, the lower cover layer being thicker than the upper cover layer; first and second external electrodes; at least one pair of first and second internal electrodes repeatedly formed inside the lower cover layer, wherein, when A is defined as 1/2 of an overall thickness of the ceramic body, B is defined as a thickness of the lower cover layer, C is defined as 1/2 of an overall thickness of the active layer, and D is defined as a thickness of the upper cover layer, a ratio of deviation between a center of the active layer and a center of the ceramic body, (B+C)/A, satisfies 1.063≦(B+C)/A≦1.745.
Abstract:
A multilayer ceramic capacitor includes: a ceramic body having dielectric layers laminated in a thickness direction, the dielectric layers having a greater width than a length; an active layer in which capacitance is formed, by including first and second internal electrodes alternately exposed to end surfaces of the ceramic body opposite to each other in a length direction with the dielectric layer interposed therebetween; upper cover layer; lower cover layers being thicker than the upper cover layer; and first and second external electrodes, wherein, when half of thickness of the ceramic body is denoted by A, thickness of the lower cover layer is denoted by B, half of thickness of the active layer is denoted by C, and thickness of the upper cover layer is denoted by D, 1.042≦(B+C)/A≦1.537 is satisfied.
Abstract:
A multilayer electronic component includes a body including one or more ceramic layers or magnetic layers; an inductor part including coil portions disposed in the body to be perpendicular to a lower surface of the body; a plurality of internal electrodes disposed in the body to be perpendicular to the lower surface of the body; and an input terminal, an output terminal, and a ground terminal disposed on the lower surface of the body. The body includes a first capacitor part and a second capacitor part having different levels of capacitance. The first and second capacitor parts each include at least two among the plurality of internal electrodes and at least one of the ceramic layers or magnetic layers is interposed therebetween.
Abstract:
A multilayer electronic component includes a body including a dielectric layer and/or a magnetic layer, a terminal part including an input terminal, an output terminal, and a ground terminal connected to the body, and a filter part including a coil part disposed in the body and a capacitor part connected to the coil part and filtering a high frequency component of an input signal input to the input terminal. The capacitor part includes a plurality of first internal electrodes connected to the coil part and a plurality of second internal electrodes exposed to an exterior of the body.
Abstract:
There are provided a multilayer ceramic capacitor and a board having the same. The multilayer ceramic capacitor may include: three external electrodes disposed on a mounting surface of a ceramic body to be spaced apart from each other and connected to lead portions of internal electrodes, wherein an interval between adjacent lead portions is 500.7 μm or less, widths of one-side margin portions of the external electrodes in a length direction of the ceramic body that are not in contact with the corresponding lead portions are 20.2 μm or more.
Abstract:
A composite electronic component includes an insulation sheet, a tantalum capacitor including a body part containing a sintered tantalum powder and a tantalum wire of which a portion is embedded in the body part, and disposed on the insulation sheet, a multilayer ceramic capacitor including a ceramic body in which a plurality of dielectric layers and internal electrodes are alternately disposed and first and second external electrodes disposed on a lower surface of the ceramic body, and disposed on the insulation sheet, and a molded part enclosing the tantalum capacitor and the multilayer ceramic capacitor, the internal electrodes including a lead-out portion led out to the lower surface of the ceramic body.
Abstract:
A multilayer ceramic capacitor may include: a ceramic body including a plurality of dielectric layers; a capacitor unit disposed in an upper portion of the ceramic body and including a plurality of first and second internal electrodes; an equivalent series resistance (ESR) controller disposed in a lower portion of the ceramic body and including a plurality of third and fourth internal electrodes; a gap layer disposed between the capacitor unit and the ESR controller; first and second external electrodes disposed on the first and second end surfaces of the ceramic body and electrically connected to the first and second internal electrodes; and third and fourth external electrodes disposed on the first and second lateral surfaces of the ceramic body and electrically connected to the third and fourth internal electrodes.