摘要:
A high-molecular-weight recombinant silk or silk-like protein having a molecular weight which is substantially similar to that of native silk protein, and a micro- or nano-sized spider silk or silk-like fiber having improved physical properties, produced therefrom. The recombinant silk or silk-like protein according to the invention has high molecular weight, like dragline silk proteins from spiders, while a fiber produced therefrom has excellent physical properties compared to a fiber produced from native silk protein. Thus, the recombinant silk or silk-like protein and the spider silk or silk-like fiber produced therefrom will be highly useful in various industrial applications, including bioengineering applications and medical applications.
摘要:
The present invention relates to a method of producing a fatty acid alkyl ester using microorganisms having the ability to produce oil, and more particularly to a method of producing a fatty acid alkyl ester, the method comprising culturing microorganisms having the ability to produce oil, thus accumulating a large amount of oil in the microorganisms, inducing the autolysis of the produced oil in the microorganisms to produce a free fatty acid, and converting the free fatty acid into an alkyl ester. According to the method of the present invention, oil accumulated in microorganisms, such as triacylglycerol that is typical oil produced by microorganisms, can be converted into a fatty acid alkyl ester with high efficiency using a metabolic engineering approach. Thus, the method of the present invention is useful for the industrial production of a fatty acid alkyl ester which has been recently found to be effective as biodiesel.
摘要:
Mutants of various polyhydroxyalkanoate (PHA) synthases capable of synthesizing a lactate polymer (PLA) and a lactate copolymer (PLA copolymer), and a method of preparing a lactate polymer and a lactate copolymer using the same are provided. More specifically, a mutant of polyhydroxyalkanoate synthase set forth in SEQ ID NO: 2, 4, 6, or 8, and a method of preparing lactate polymer and lactate copolymer using the mutant of synthase are provided. The polyhydroxyalkanoate synthase set forth in SEQ ID NO: 2, 4, 6, or 8 can have an activity of synthesizing a lactate polymer and a lactate copolymer by an amino acid sequence mutation affecting an activity of synthesizing a lactate polymer, and can produce a lactate polymer and a copolymer that have different features, respectively, by using the mutants of the synthase.
摘要翻译:提供能够合成乳酸聚合物(PLA)和乳酸共聚物(PLA共聚物)的各种聚羟基链烷酸酯(PHA)合成酶的突变体,以及使用其制备乳酸盐聚合物和乳酸共聚物的方法。 更具体地,提供了SEQ ID NO:2,4,6或8所示的聚羟基链烷酸酯合酶的突变体,以及使用合成酶突变体制备乳酸盐聚合物和乳酸共聚物的方法。 SEQ ID NO:2,4,6或8所示的聚羟基链烷酸酯合酶可以通过影响乳酸聚合物合成活性的氨基酸序列突变而具有乳酸聚合物和乳酸共聚物的合成活性, 乳酸聚合物和具有不同特征的共聚物,分别通过使用合成酶的突变体。
摘要:
The present invention relates to a method for secreting and producing a target protein into cell culture broth. More particularly, the invention relates to a microorganism co-transformed with a recombinant expression vector containing E. coli outer membrane protein F (OmpF) and a recombinant expression vector containing a target protein to be secreted into cell culture broth, as well as a method of secreting and producing the target protein into cell culture broth by culturing the microorganism. According to the invention, the target protein can be secreted into cell culture broth in a pure form without fusion with other proteins so that the efficient isolation and purification of the target protein is possible.
摘要:
The present invention relates to a method of preparing heavy metal nanoparticles using a heavy metal-binding protein. More specifically, relates to a method for preparing heavy metal structures, comprising the steps of: culturing a microorganism transformed with a gene encoding a heavy metal-binding protein, in a heavy metal ion-containing medium, to produce heavy metal structures in the microorganism; and collecting the produced heavy metal structures, as well as nanoparticles of heavy metal structures prepared according to said method. Unlike prior methods of preparing quantum dots by physically binding metal materials, en the quantum dots disclosed herein can be efficiently produced by expressing the heavy metal-binding protein in cells. In addition, the quantum dots are useful because they can solve an optical stability problem that is the shortcoming of organic fluorophores.
摘要:
The present invention relates to a method for simultaneously surface expressing a target protein using a cofactor and an enzyme regenerating the cofactor on the cell surface. According to the present invention, it is possible to provide a microorganism capable of simultaneously surface expressing a target protein using a cofactor to transform a biochemical material at a high efficiency and an enzyme generating the cofactor without adding an expensive cofactor in a large amount.
摘要:
The present invention relates to a mutant microorganism producing a high concentration of L-threonine in high yield, prepared using site-specific mutation, not random mutation, such as treatment with a mutation inducer, a method for preparing the same, and a method for preparing L-threonine using the mutant microorganism producing L-threonine. By using the mutant microorganism according to the present invention, L-threonine can be prepared at high yield, additional strain development becomes possible and their physiological phenomena can be easily understood since genetic information of L-threonine producing microorganism can be identified.
摘要:
The present invention relates to a bio-silica chip comprising a silica-binding protein and a fabrication method thereof, and more particularly to a bio-silica chip in which a fusion protein of a silica-binding protein and a probe protein is immobilized on a chip comprising a silica layer, a fabrication method thereof and a method of using the bio-silica chip to detect interactions with biomaterials. The bio-silica chip will be very useful in biosensors, etc., because the bio-silica chip is advantageous in that it does not cause non-specific protein binding in the detection of protein-DNA, protein-ligand, protein-antibody, protein-peptide, protein-carbohydrate, protein-protein and cell-biomaterial interactions. Also, in the method for fabricating the bio-silica chip, a probe chip can be selectively immobilized on a silica device chip, which is widely used in biosensors, without a chemical surface treatment process. Thus, a chip fabricating process is simplified and a complicated process for purifying the probe protein becomes unnecessary, thus providing great improvements in productivity and economic efficiency
摘要:
A nucleotide sequence encoding a fumarate hydratase C and a method for preparing succinic acid using the same, more particularly, a fumarate hydratase C having the activity of converting malate to fumarate, a fumC nucleotide sequence encoding the fumarate hydratase C, a recombinant vector containing the nucleotide sequence, a microorganism transformed with the recombinant vector, and a method for preparing succinic acid using the transformed microorganism.
摘要:
Nucleotide sequences encoding formate dehydrogenases D & E and a method for preparing succinic acid using the same, more particularly, formate dehydrogenases D & E converting formate to carbon dioxide and hydrogen, fdhD and fdhE nucleotide sequences encoding the formate dehydrogenases D & E, recombinant vectors containing the nucleotide sequences, microorganisms transformed with the recombinant vectors, and a method for preparing succinic acid using the transformed microorganism.