Abstract:
Impurity atoms of a first type are implanted through a gate and a thin gate dielectric into a channel region that has substantially only the first type of impurity atoms at a middle point of the channel region to increase the average dopant concentration of the first type of impurity atoms in the channel region to adjust the threshold voltage of a transistor.
Abstract:
A semiconductor device has a vertical drain extended MOS transistor with deep trench structures to define a vertical drift region and at least one vertical drain contact region, separated from the vertical drift region by at least one instance of the deep trench structures. Dopants are implanted into the vertical drain contact regions and the semiconductor device is annealed so that the implanted dopants diffuse proximate to a bottom of the deep trench structures. The vertical drain contact regions make electrical contact to the proximate vertical drift region at the bottom of the intervening deep trench structure. At least one gate, body region and source region are formed above the drift region at, or proximate to, a top surface of a substrate of the semiconductor device. The deep trench structures are spaced so as to form RESURF regions for the drift region.
Abstract:
An integrated circuit and method having a JFET with a buried drift layer and a buried channel in which the buried channel is formed by implanting through segmented implant areas so that the doping density of the buried channel is between 25 percent and 50 percent of the doping density of the buried drift layer.
Abstract:
A semiconductor device includes a depletion mode GaN FET cascoded with an enhancement mode NMOS transistor. A gate of the GaN FET is electrically coupled to a source of the NMOS transistor through a gate network. The gate network controls at least one of a turn-on time and a turn-off time of the GaN FET. The gate network may be controlled by an input signal to a gate of the NMOS transistor.
Abstract translation:半导体器件包括与增强型NMOS晶体管级联的耗尽型GaN FET。 GaN FET的栅极通过栅极网络电耦合到NMOS晶体管的源极。 栅极网络控制GaN FET的导通时间和关断时间中的至少一个。 栅极网络可以由到NMOS晶体管的栅极的输入信号来控制。
Abstract:
A semiconductor device has a vertical drain extended MOS transistor with deep trench structures to define a vertical drift region and at least one vertical drain contact region, separated from the vertical drift region by at least one instance of the deep trench structures. Dopants are implanted into the vertical drain contact regions and the semiconductor device is annealed so that the implanted dopants diffuse proximate to a bottom of the deep trench structures. The vertical drain contact regions make electrical contact to the proximate vertical drift region at the bottom of the intervening deep trench structure. At least one gate, body region and source region are formed above the drift region at, or proximate to, a top surface of a substrate of the semiconductor device. The deep trench structures are spaced so as to form RESURF regions for the drift region.
Abstract:
An integrated circuit containing an analog MOS transistor has an implant mask for a well which blocks well dopants from two diluted regions at edges of the gate, but exposes a channel region to the well dopants. A thermal drive step diffuses the implanted well dopants across the two diluted regions to form a continuous well with lower doping densities in the two diluted regions. Source/drain regions are formed adjacent to and underlapping the gate by implanting source/drain dopants into the substrate adjacent to the gate using the gate as a blocking layer and subsequently annealing the substrate so that the implanted source/drain dopants provide a desired extent of underlap of the source/drain regions under the gate. Drain extension dopants and halo dopants are not implanted into the substrate adjacent to the gate.
Abstract:
An integrated circuit containing a first plurality of MOS transistors operating in a low voltage range, and a second plurality of MOS transistors operating in a mid voltage range, may also include a high-voltage MOS transistor which operates in a third voltage range significantly higher than the low and mid voltage ranges, for example 20 to 30 volts. The high-voltage MOS transistor has a closed loop configuration, in which a drain region is surrounded by a gate, which is in turn surrounded by a source region, so that the gate does not overlap field oxide. The integrated circuit may include an n-channel version of the high-voltage MOS transistor and/or a p-channel version of the high-voltage MOS transistor. Implanted regions of the n-channel version and the p-channel version are formed concurrently with implanted regions in the first and second pluralities of MOS transistors.
Abstract:
Impurity atoms of a first type are implanted through a gate and a thin gate dielectric into a channel region that has substantially only the first type of impurity atoms at a middle point of the channel region to increase the average dopant concentration of the first type of impurity atoms in the channel region to adjust the threshold voltage of a transistor.
Abstract:
A semiconductor device is formed with a stepped field plate over at least three sequential regions in which a total dielectric thickness under the stepped field plate is at least 10 percent thicker in each region compared to the preceding region. The total dielectric thickness in each region is uniform. The stepped field plate is formed over at least two dielectric layers, of which at least all but one dielectric layer is patterned so that at least a portion of a patterned dielectric layer is removed in one or more regions of the stepped field plate.
Abstract:
A semiconductor device includes a GaN FET with an overvoltage clamping component electrically coupled to a drain node of the GaN FET and coupled in series to a voltage dropping component. The voltage dropping component is electrically coupled to a terminal which provides an off-state bias for the GaN FET. The overvoltage clamping component conducts insignificant current when a voltage at the drain node of the GaN FET is less than the breakdown voltage of the GaN FET and conducts significant current when the voltage rises above a safe voltage limit. The voltage dropping component is configured to provide a voltage drop which increases as current from the overvoltage clamping component increases. The semiconductor device is configured to turn on the GaN FET when the voltage drop across the voltage dropping component reaches a threshold value.