Abstract:
The present invention provides a built-in self-repairable memory. The invention repairs a faulty IC through hard fuses, as well as through available redundancy in memories on chip. As the faults are not present in all the memories, the invention uses a lesser number of fuses to actually make a repair and thus results in a yield enhancement. The fuse data is stored in a compressed form and then decompressed as a restore happens at the power on. The fuse data interface with the memory to be repaired is serial. The serial links decreases the routing congestion and hence gain in area as well as gain in yield (due to lesser defects and reduced area)
Abstract:
The present invention provides a Differential Signaling line driver including a pre-emphasis circuit, which boosts the output drive current without any delay whenever there is a transition in the input signal to the driver, using the input signal itself to provide the pre-emphasis through a current steering circuit that switches the direction of drive currents to provide a differential output signal. A delayed signal is then used to disable the pre-emphasis after a short period.
Abstract:
A configurable memory architecture includes a built-in testing mechanism integrated in said memory to support very efficient built-in self-test in Random Access Memories (RAMs) with greatly reduced overhead, in terms of area and speed. Memories can fail at high speed due to glitches (unwanted pulses which can at times behave as invalid clocks and destroy the functionality of synchronous systems) produced in decoding, the slow precharge of bitlines or the slow sensing of the sense amplifiers. The memory architecture incorporates structured DFT techniques to separately detect these failures.
Abstract:
A self test structure for interconnect and logic element testing in programmable devices including a plurality of logic elements; an interconnect structure for connecting the logic elements; SRAM based configuration latches for configuring the interconnect structure; test configuration circuitry for configuring any desired set of logic elements, interconnect structure and configuration latches during reset state that links the logic elements and interconnect structure to form a complete path between the interface points of the programmable logic device to enable testing of the desired elements in the complete path.
Abstract:
A Programmable Logic Device providing reduction in power consumption for sequential logic and data storage functions, including at least one circuit arrangement configurable to function as a dual-edge-triggered flip-flop operating on a selected one or both edges of the circuit clock.
Abstract:
A system and method for multiplexing an integrated circuit pin include a plurality of registers for storing bit values; a plurality of functions to be multiplexed on receiving the bit values; a decoding logic for decoding the bit values for selecting at least one of the functions; a plurality of pads connected to the plurality of functions and the decoding logic; and external pin/pins acting as inputs/outputs for the selected functionality depending upon the bit values.
Abstract:
A system for measuring a timing skew between two digital signals may include a clock generator for generating a time measurement clock, and a pulse-to-digital converter for converting the timing skew into an equivalent digital coded value after correcting for internal logic delays. The system may further include a register bank for storing the digital coded values, and a controller for generating control signals and sequences for controlling the operation of the pulse-to-digital converter and the register bank.
Abstract:
An improved multi-wordline memory architecture providing decreased bitline coupling to increase speed and reduce power consumption including an interleaving arrangement for connecting adjacent bitcells to different wordlines, coupled to a multiplexing arrangement for sharing bitlines of adjacent bitcells.
Abstract:
An efficient implementation of DSP functions in a field programmable gate array (FPGA) using one or more computational blocks, each block having of a multiplier, an accumulator, and multiplexers. The structure implements most common DSP equations in a fast and a highly compact manner. A novel method for cascading these blocks with the help of dedicated DSP lines is provided, which leads to a very simple and proficient implementation of n-stage MAC operations.
Abstract:
An improved synchronous SRAM capable of faster read-modify-write cycle time using separate input and output terminals. It describes the circuitry for performing a RMW operation in a memory module at high frequency in a nanometer technology. A byte write enable bus is incorporated into the device so as to provide the flexibility of modification and correction at selective columns, keeping rest of the columns unaltered. The termination of read operation and the triggering of write operation is done by the activation of same signal. Also described is the provision for tuning the circuitry for triggering write operation depending on the time taken by the controller to modify and revise the read-out data.