Abstract:
A method and device are provided for producing synthetic gas by combustion of a fuel in a combustive agent deficient atmosphere, said combustive agent being gaseous, said device including first means for feeding the fuel and a part of the combustive gas into the reactor, and second means for feeding a second part of the combustive gas into the reactor, said second means including a porous wall defining at least a part of said reactor.
Abstract:
An oxidizable charge is oxidized in a gaseous phase reaction. The oxidizable charge and an oxidizing gas flow simultaneously and separately through a distribution zone made of a ceramic material. In at least a part of the distribution zone, the oxidizable charge and the oxidizing gas flow through a multiplicity of passages of a dimension so small that any flame resulting from oxidation of the oxidizable charge will be quenched. The oxidizable charge and oxidizing gas are then mixed in a mixing zone made from a ceramic material defining a multiplicity of spaces with passages having a dimension comparable to the dimension of the passages in the distribution zone. The mixture of gases then flows through a reaction zone made from a ceramic material defining another multiplicity of passages having dimensions comparable to those in the distribution zone. The distance between each of the distribution, mixing and reaction zones is also so small that any flame resulting from oxidation of the oxidizable charge will be quenched.
Abstract:
A new technique for oxidizing a gaseous phase oxidizable feed involves a process wherein a gas mixture containing at least one oxidizing gas is placed in contact with an oxidizable feed inside a mixing contact zone situated between at least one first zone passed through by the feed and at least one second zone passed through by the oxidation reaction products. The first and second zones define a multiplicity of multidirectional spaces exhibiting passages having, along at least one direction, a dimension at most equal to the jamming distance of the flame possibly resulting from oxidations of feed. The contact zone comprises an oxidizing gas mixture supply means comprising a plurality of parallel pipes with porous walls situated at a distance from the first and second zones which is at most equal to the jamming distance.
Abstract:
Disclosed is a method of carrying out a mobile atom insertion reaction, such as a hydrogen insertion reaction, for the synthesis of reduced, hydrogenated compounds. Such reactions include the production of ammonia and hydrazine from nitrogen, formic acid and methanol from carbon dioxide, and hydrogen peroxide from oxygen. The insertion reactions are carried out at a bipolar mobile atom transmissive membrane comprising a membrane formed of a mobile atom pump material, as a hydrogen pump material, conductive atom transmissive means on one surface of the membrane and conductive atom transmissive means on the opposite surface of the membrane. The mobile atom, such as hydrogen, diffuses across the membrane, to provide a source of hydrogen on the insertion reaction side of the membrane. The insertion reaction side of the membrane is positively biased with respect to a counterelectrode so that a reactant molecule, such as carbon dioxide, is electrosorbed on that surface of the membrane. The electrosorbed reactant molecular chemically reacts with the surface hydrogen by the insertion reaction to form a reduced, hydrogenated product such as formic acid. Also disclosed is a chemical reactor, containing the membrane, and several electrical field assisted chemical reactions utilizing the membrane and reactor.
Abstract:
Reagent is added to liquid chromatographic effluent to increase detection sensitivity of sample bands, or to enhance sensitivity with respect to interfering bands which overlap sample bands of interest, using one or more hollow fibers immersed within mobile reagent which is permeated through the walls of the fibers and, thus, ultimately diffused into the column effluent.
Abstract:
The disclosure relates to a light irradiation device which can improve curability of photo-curable materials. A light irradiation device includes a first supply section having a porous portion, the first supply section being capable of supplying a gas to a photo-curable material through the porous portion; and an irradiation section disposed in alignment with the porous portion or disposed downstream from the porous portion, the irradiation section being capable of irradiating the photo-curable material with light.
Abstract:
Apparatus and methods are disclosed for uniformly mixing fluid phases entrained in a porous material. A mixer may have a vessel and at least one porous material held by the vessel. At least one actuator may be acoustically coupled with at least one wall of the vessel for generating a wave. The wave effects mixing of at least two fluids in the porous material. The actuator may be a linear motor actuated with a control signal of predetermined frequency. The actuator may have a number of actuator pairs each including respective first and second actuators at respective first and second sides of the vessel. The actuators may be hinged for reciprocal movement. The actuators may be actuated to form a compression expansion wave to effect fluid motion in the porous material.
Abstract:
A method of converting C2 and/or higher alkanes to olefins by contacting a feedstock containing C2 and/or higher alkanes with a first surface of a metal composite membrane of a sintered homogenous mixture of an Al oxide or stabilized or partially stabilized Zr oxide ceramic powder and a metal powder of one or more of Pd, Nb, V, Zr, Ta and/or alloys or mixtures thereof. The alkanes dehydrogenate to olefins by contact with the first surface with substantially only atomic hydrogen from the dehydrogenation of the alkanes passing through the metal composite membrane. Apparatus for effecting the conversion and separation is also disclosed.