Abstract:
A method of manufacturing a glass substrate to control the fragmentation characteristics by etching and filling trenches in the glass substrate is disclosed. An etching pattern may be determined. The etching pattern may outline where trenches will be etched into a surface of the glass substrate. The etching pattern may be configured so that the glass substrate, when fractured, has a smaller fragmentation size than chemically strengthened glass that has not been etched. A mask may be created in accordance with the etching pattern, and the mask may be applied to a surface of the glass substrate. The surface of the glass substrate may then be etched to create trenches. A filler material may be deposited into the trenches.
Abstract:
A conductive paste contains at least a conductive powder, glass frit, and an organic vehicle. The conductive powder is a mixed powder of an atomized powder prepared by an atomization method and a wet reduced powder prepared by a wet reduction method and the conductive powder contains the atomized powder in the range of 5 to 40 wt %. The atomized powder is 5.2 to 9 μm in average particle size and the content of a chlorine component mixed in the conductive powder is 42 ppm or less. The conductive paste is applied in the form of a line onto a glass substrate 1 and subjected to firing to form conductive films. This conductive paste can prevent glass substrates from undergoing color changes and prevent base layers for conductive films from having structural defects such as cracks.
Abstract:
A subject matter of the invention is a glass-ceramic sheet provided, on at least a portion of at least one of its faces, with a coating of thin layers comprising at least one thin functional layer composed of a metal based on niobium metal Nb, or of an oxide based on a niobium oxide NbOx in which x is at most 0.5, the or each thin functional layer being framed by at least two thin layers made of dielectric materials, the physical thickness of the thin functional layer or, if appropriate, the combined physical thickness of all the thin functional layers being within a range extending from 8 to 15 nm.
Abstract:
A method for welding together glass workpieces where one of the workpieces has metal nanoparticles positioned at or near the surface to be welded. The method comprises positioning the workpieces in operative contact at an interface where a weld is to be formed, applying a laser beam to be incident upon the interface wherein energy from the laser beam is absorbed by the nanoparticle bearing workpiece and the energy from the laser beam is transferred to the glass surrounding the metal nanoparticles to heat the glass and to weld the workpieces together.
Abstract:
A method of manufacturing a glass substrate to control the fragmentation characteristics by etching and filling trenches in the glass substrate is disclosed. An etching pattern may be determined. The etching pattern may outline where trenches will be etched into a surface of the glass substrate. The etching pattern may be configured so that the glass substrate, when fractured, has a smaller fragmentation size than chemically strengthened glass that has not been etched. A mask may be created in accordance with the etching pattern, and the mask may be applied to a surface of the glass substrate. The surface of the glass substrate may then be etched to create trenches. A filler material may be deposited into the trenches.
Abstract:
The invention concerns an ultra-clear glass sheet, i.e. a sheet of glass with high energy transmission, that can be used, in particular, in the solar and architectural fields. More specifically, the invention concerns a sheet of glass having a composition which comprises, in an amount expressed as percentages of the total weight of the glass: SiO2 60-78%; Al2O3 0-10%; B2O3 0-5%; CaO 0-15%; MgO 0-10%; Na2O 5-20%; K2O 0-10%; BaO 0-5%; total iron (expressed in the form of Fe2O3) 0.002-0.03%, the composition comprises a copper content of 0.001 to 0.15% by weight relative to the total weight of the glass, the copper content being expressed in the form of Cu as a percentage by weight relative to the total weight of the glass.
Abstract translation:本发明涉及一种超透明玻璃板,即具有高能量传输的玻璃板,其特别可用于太阳能和建筑领域。 更具体地说,本发明涉及一种具有组成的玻璃片,其含量以玻璃总重量的百分数表示:SiO 2 60-78%; Al2O3 0-10% B2O3 0-5%; CaO 0-15%; MgO 0-10%; Na2O 5-20%; K2O 0-10%; BaO 0-5%; 总铁(以Fe 2 O 3的形式表示)0.002-0.03%,组成包含相对于玻璃的总重量为0.001〜0.15重量%的铜含量,铜含量以Cu的形式表示为百分比 ,相对于玻璃的总重量。
Abstract:
To produce optical beam splitter cubes, an optically transparent plate is provided with an optically active layer on a cover side. Then, on both cover sides of the plate, a plurality of prism bars are formed by molding an optically transparent material, so that a double prism plate is obtained. The prism bars are arranged on cover sides of the plate projecting roof-like in ridge lines separated from each other by valleys. Each prism bar has the cross section of an isosceles right-angled triangle, complemented by the prism bar lying opposite on the other cover side of the plate to form the cross section of the beam splitter cube. The double prism plate is cut up along the valleys between the prism bars and transverse to the longitudinal direction into segments which in each case form a beam splitter cube.
Abstract:
Optically transparent and translucent superhydrophobic and lipophobic surfaces are disclosed. The surfaces may be composed of a glass substrate on which multiple nano-particulates may be heat fused. The nano-particulates may be composed of metal oxides such as aluminum oxide or zinc oxide. Methods for fabricating such surfaces are also disclosed. In one method, a thin layer of a metal may be deposited on a substrate. The metal-covered substrate may be heated in an oxidizing atmosphere until the metal forms metal oxide nano particulates on the surface of the substrate. The heating process may also serve to fuse the nano-particulates onto the substrate.
Abstract:
There is provided a thin glass elongated body that can be prevented from being broken when subjected to processing or treatment by a roll-to-roll process.A thin glass elongated body according to an embodiment of the present invention includes: a main body comprising an elongated thin glass; and a handling section comprising tough films connected to both ends of the main body in a length direction thereof.