Abstract:
A pump for a combustion engine is disclosed. The pump may have at least one pumping member movable through a plurality of displacement strokes during a single engine cycle. The pump may also have a controller in communication with the at least one pumping member. The controller may have stored in a memory thereof a map relating a speed of the combustion engine and fuel demand to a contribution factor associated with each of the plurality of displacement strokes and a total fuel delivery amount.
Abstract:
A pump for a combustion engine is disclosed. The pump may have at least one pumping member movable through a plurality of displacement strokes during a single engine cycle. The pump may also have a controller in communication with the pumping member. The controller may be configured to selectively reduce an amount of fluid displaced during at least one, but less than all of the plurality of displacement strokes. The reduction may be initiated in response to a demand for the displaced fluid.
Abstract:
In an engine equipped with a common rail fuel injection system, the engine can sometimes experience an overspeed condition, and the pump may respond to this overspeed condition with self-actuation even in the absence of any control signal. In order to prevent an over pressurization condition, a liquid supply into a pumping chamber of the pump is limited during a retraction stroke of a pump plunger by energizing an electrical actuator coupled to a spill valve, to move the spill valve toward a closed position. The electrical actuator is de-energized during a pumping stroke of the pump plunger to allow the spill valve to more toward an open position. Liquid from the pumping chamber is discharged through the spill valve during the pumping stroke, but over pressurization is avoided by limiting the amount of liquid that can enter the pumping chamber during the retraction stroke.
Abstract:
A fuel injection device of an internal combustion engine executes tentative learning repeatedly while engine cooling water temperature increases. An actual learning value is renewed with the newest instrumental error learning value so that accuracy of the actual learning value is improved gradually. Thus, a variation of characteristics due to an instrumental error of a supply pump is absorbed as early as possible. In addition, accuracy of a tentative learning value obtained through the tentative learning is quickly brought close to the accuracy of the actual learning value obtained through main learning. As a result, a learning period at vehicle factory shipment is shortened and productivity at a vehicle factory is improved.
Abstract:
In a method, a computer program and a control unit for operating an internal combustion engine having an injection system, e.g., for a motor vehicle, in the injection system fuel is conveyed into a fuel accumulator by a metering unit and a high-pressure pump. The pressure in the fuel accumulator is recorded and controlled by control of the metering unit with the aid of the control unit. In order to consider also possible manufacturing tolerances of individual metering units in the control of the pressure in the fuel accumulator of such a system, which is already known as such, and thereby make the control more precise, an individual characteristic curve is provided for the actually used metering unit be ascertained and taken into account in the pressure regulation.
Abstract:
Actuating mechanism for hydraulically driven pump-injectors for internal combustion engines specifically for diesels, which in order to reduce dimensions of pump-injector body, comprises pressure intensifier with several power pistons and a pumping plunger.
Abstract:
The high-pressure pump (7) comprises a number of pumping elements (18) actuated in reciprocating motion through corresponding suction and delivery strokes. Each pumping element (18) is provided with a corresponding intake valve (25) in communication with an intake pipe (10) supplied by a low-pressure pump (9). Set on the intake pipe (10) is an on-off solenoid valve (27) having a reduced flow rate substantially of the same order of magnitude as the maximum amount of fuel that can be injected by an injector (5). The solenoid valve (27) is controlled in a chopped way in synchronism with an intermediate part (32) of the suction stroke of each pumping element (18).
Abstract:
The engine ECU executes a program including the step of detecting an engine coolant temperature, the step of detecting an engine speed and an engine load, the step of estimating a temperature at a tip end of an in-cylinder injector based on the engine coolant temperature, the engine speed and the engine load, and, when the temperature at the tip end is greater than a guaranteed temperature, the step of calculating a drive duty of a high-pressure fuel pump that ensures a decrease of the temperature at the tip end of the in-cylinder injector to the guaranteed temperature, and the step of controlling the high-pressure fuel pump using the drive duty.
Abstract:
Engines and methods of controlling an engine may involve one or more cams associated with engine intake and/or exhaust valves. In some examples, shifting the rotational phase of one or more cams advances and/or delays timing of the opening and/or closing of valves. Timing of valve closing/opening and possible use of an air supply system may enable engine operation according to a Miller cycle.
Abstract:
A fuel injection pump includes a cam rotating with a camshaft, a cam ring revolving around the camshaft, a housing, plungers for pressurizing and pressure-feeding fuel drawn into fuel pressurizing chambers, and a rotary pump for supplying the fuel to the fuel pressurizing chambers. The housing includes a first housing portion for rotatably housing the rotary pump and second housing portions for housing the plungers so that the plungers can reciprocate. A filter is disposed in one of an outlet portion of a first low-pressure fuel passage in the first housing streaming the fuel from the rotary pump toward the fuel pressurizing chamber, an inlet portion of a second low-pressure fuel passage of the second housing portion facing the outlet portion, and a certain point in the second low-pressure fuel passage.