Abstract:
The present invention relates to a sensor, which includes a conductor connected to a source terminal, while a second conductor is connected to a return terminal. Between the two conductors resides a semi-conductive layer with a predetermined resistance. A resistance measurement device determines how the predetermined resistance of the semi-conductive layer changes in response to a change in pressure or temperature. Also, included is a sensor with integral fault detection. The present invention also relates more generally to a coaxial cable, which includes a semi-conductive layer between two conductors. The present invention also incorporates a method of sensing pressure or temperature by measuring a change in resistance of a semi-conductive layer.
Abstract:
A load sensor 10 is provided with an elastic conductive tube 21, and a first electrode member 22 and second electrode member 23 separated by a distance in the longitudinal direction. The load sensor 10 is further provided with an elongated insertion member 24 to be inserted into the elastic conductive tube 21, and envelope members 25, which are provided at predetermined intervals in the longitudinal direction to enclose the insertion member 24, and together with the insertion member 24 are inserted into the tube 21 to separate the insertion member 24 from the tube 21. When the tube 21 is bent by the application of a load, the electrode members 22 and 23 contact the tube 21. The load is detected by determining whether the electrode members 22 and 23 have been rendered conductive via the tube 21. The sensitivity of the sensor 10 can be easily controlled by adjusting the interval between envelope members 25 and the thicknesses thereof.
Abstract:
A small and thin pressing direction sensor that can continually detect pressing directions in the angle range of 360 degrees is provided. This pressing direction sensor includes a ring-like resistive film pattern, a first electrode pattern, and a conductive member that electrically connects the resistive film pattern and the first electrode pattern when pressed. The voltage of the first electrode pattern represents the pressing direction. This pressing direction sensor may further include a second electrode pattern. A signal representing the pressing force can be obtained from the second electrode pattern when the pressed conductive member is brought into contact with the second electrode pattern.
Abstract:
The cost and complexity of an electronic pressure sensitive transducer are decreased by constructing such a transducer directly on a printed circuit board containing support electronics. Conductive traces are formed on the printed circuit board to define a contact area. A flexible substrate having an inner surface is positioned over the contact area. An adhesive spacer, substantially surrounding the contact area, attaches the flexible substrate to the printed circuit board. At least one resistive layer is deposited on the flexible substrate inner surface. In use, the resistive layer contacts at least two conductive traces in response to pressure applied to the flexible substrate to produce an electrical signal indicative of applied pressure.
Abstract:
A composition of a high sensitivity sensor for detecting mechanical quantity including: an insulating matrix material; and a conductive path formed by discontinuously dispersing second phase particles of a conductor or a semiconductor into the insulating matrix material at an interparticle distance from 0.001 to 1 &mgr;m, thereby imparting the high sensitivity in the mechanical quantity to the composition.
Abstract:
The dynamic quantity sensor includes an electrically insulating substance layer and at least one pair of electrodes contacting the electrically insulating substance layer, wherein a plurality of conductive particles are dispersed in the electrically insulating substance layer so that a tunnel current flows when a voltage is applied between the at least one pair of electrodes, and a dynamic quantity relating to a distance between the conductive particles is detected based on the tunnel current.
Abstract:
A pressure sensitive transducer array in which a plurality of transducers are connected in series and in parallel with one another. In one embodiment, a resistive layer is formed from carbon or silver ink on a polyester film. A plurality of conductive shunt elements having greater conductivity than the resistive layer is formed on a second polyester film. The films are placed adjacent to one another with the shunt elements contacting the resistive layer. Voltage is applied across the resistive layer and pressure is applied thereto. As the pressure increases, the number of current paths set up through contact points on the shunt elements increase thereby decreasing the resistance across the resistive layer and increasing current flow. In another embodiment a plurality of plate elements are contained in a plane on one side of a dielectric layer. A plurality of plate elements are contained in a plane on the other side of the dielectric layer. As the layer is pushed together responsive to force applied, total capacitance as measured across the planes of plate elements varies.
Abstract:
A pressure sensor including a plate-shaped metal substrate; a glass layer provided on a surface of the metal substrate and mainly containing a partially devitrified enamel composition; a resistor element which is provided on a surface of the glass layer and has an electric resistance changed in accordance with the degree of strain thereof; and a pair of electrodes connected to the resistor element. The resistor element is provided so as to receive a stress, a pressure, or a load applied perpendicularly to a surface thereof. Alternatively, both surfaces of the metal substrate are provided with glass layers, respectively, and the resistor element is provided on one of the glass layers.
Abstract:
A pressure sensitive sensor in which a pressure detecting convex portion is formed on the surface of a pressure-sensitive and conductive elastomer sheet, and an electrode is arranged on the reverse side of the pressure detecting convex portion for making it possible to detect a pressure acting in the direction in parallel or in the oblique direction with a slight angle with respect to the surface of a pressure-sensitive and conductive elastomer component. In addition, for obtaining a high detection density, a contact is made up with a face-defined body defining a pressure face, and a contacting convex portion is made to protrude from the face-defined body, where the contact is resiliently supported onto the pressure-sensitive elastomer sheet.
Abstract:
A device for measuring physical variables comprises a pair of thin planar members disposed symmetrically in a face-to-face arrangement about a plane including a reference axis defining the direction of displacement of a target object mechanically coupled to the pair of thin planar members, wherein the displacement in a first direction parallel to the reference axis increases the separation distance between the pair of thin planar members and the displacement in a second direction opposite to the first direction decreases the separation distance between the pair of thin planar members. The physical variable related to the displacement is determined as a function of an electrical parameter varying as a function of the separation distance between the pair of thin planar members such as the electrical capacitance or resistance therebetween measured by a capacitance or ohm meter.