Abstract:
An arrangement for marking and measuring sections of railroad track, which allows track sections which are susceptible to wear to be determined reliably and accurately. A sensor unit is provided for detecting measuring points, and has at least two independent detector units measuring in a non-contacting manner, based on a first optical sensor having spectrally selective sensitivity and a second identification detector. The measuring points, as angle elements, are detachably fastened to the rail and are provided at a horizontally oriented leg with a coating emitting in a narrow spectral band and with an identification value carrier for the identification detector. The sensor unit is so arranged at a device which can travel on tracks that the independent detector units are guided parallel to the rail in the same direction over the measuring points with the movement of the device which can travel on tracks.
Abstract:
In the fabrication of a semiconductor integrated circuit device, a 2D-3D inspection technique for solder printed on a substrate is provided which permits easy preparation of data and easy visual confirmation of a defective portion. In a substrate inspecting step, first, a 3D inspection is performed, followed by execution of 2D inspection, whereby a 2D picked-up image of the portion of a pad determined to be defective can be displayed on a larger scale simultaneously with the end of inspection, thereby providing an environment for efficient visual confirmation of the defect. Further, by subjecting a raw substrate to measurement at the time of preparing inspection data, a relation between an original height measurement reference generated automatically by the inspection system and the height of a pad upper surface is checked, whereby it is possible to measure the height and volume of printed solder based on the pad upper surface.
Abstract:
Contrast enhancement in a metrology tool may include generating a beam of illumination, directing a portion of the generated beam onto a surface of a spatial light modulator (SLM), directing at least a portion of the generated beam incident on the surface of the SLM through an aperture of an aperture stop and onto one or more target structures of one or more samples, and generating a selected illumination pupil function of the illumination transmitted through the aperture utilizing the SLM in order to establish a contrast level of one or more field images of the one or more target structures above a selected contrast threshold, and performing one or more metrology measurements on the one or more target structures utilizing the selected illumination pupil function.
Abstract:
An inspecting apparatus and method including first and second illuminating units for illuminating a surface of a specimen to be inspected with different incident angles and first and second detecting optical units arranged at different elevation angle directions to the surface of the specimen for detecting images of the specimen illuminated by the first and second illuminating units.
Abstract:
This invention describes a photonic sensing method and device based on the periodic dielectric structures of photonic forbidden band, in which the sensing process is carried out through the measurement of variation in signal amplitude as it exits the device. The variation in amplitude is due to a variation in the refraction index of the structure, as a consequence of the presence of the substances that are the object of the sensing. Among the advantages provided by the invention, it is worth mentioning its simplicity in the sensing process; its high level of integration, allowing for a design of reduced proportions; and its adaptability to dielectric structures of one, two or three dimensions.
Abstract:
This disclosure relates generally to a sampling device, and more particularly, a sampling device that facilitates spectroscopic measurements with a variable path length and the necessary software controlled algorithms and methods for such a device.
Abstract:
An optical sensor includes a substrate having an upper surface, a plurality of protrusions on the substrate, wherein each of the plurality of protrusions is defined by a base at the upper surface of the substrate and by one or more sloped surfaces oriented at oblique angles relative to the upper surface, and two or more structural layers in the sloped surfaces. The surfaces of the two or more structural layers can adsorb molecules of a chemical or biological substance.
Abstract:
Detection of periodically repeating nanovoids is indicative of levels of substrate contamination and may aid in reduction of contaminants on substrates. Systems and methods for detecting nanovoids, in addition to, systems and methods for cleaning and/or maintaining cleanliness of substrates are described.
Abstract:
When examination at a scan speed equal to or higher than the line rate of the sensor such as a TDI sensor is carried out, the line rate of the TDI sensor is asynchronous with the scan speed, and the image is blurred. Therefore, a TDI sensor cannot be used at a scan speed equal to or higher than the line rate of the TDI sensor. This problem has not been considered. To solve the problem, high-speed examination irrespective of the line rate of the TDI sensor is enabled. To control the line rate of the TDI sensor and stage scan speed asynchronously and to solve the problem of the image addition variation due to the charge accumulation of the TDI sensor, the object to be examined is irradiated with thin-line illumination, and only a given pixel line of the TDI sensor is made to receive light scattered by the object to be examined. The aspect ratio of the detection pixel size can be controlled by the speed ratio between the line rate of the TDI sensor and the stage scan speed.