Abstract:
An optical device includes a row of optical units, each of the optical units comprising an antenna element and an associated phase shifting element, a first optical power splitter optically coupled to a first optical input/output element, and a first plurality of boundary adjustment elements. In the optical phased array, each of the first plurality of boundary adjustment units optically couples the first optical power splitter to different sub-rows of the row of optical units, and each of the plurality of boundary adjustment elements include a sub-row amplitude adjustment element and a sub-row phase adjustment element.
Abstract:
A substantially planar waveguide for dynamically controlling the out-of-plane angle at which a light beam exits the waveguide. Generally, liquid crystal materials may be disposed within a waveguide in a cladding proximate or adjacent to a core layer of the waveguide. In one example, the waveguide may contain one or more taper regions such that the light beam exits the waveguide and propagates out-of-the-plane of the waveguide into an out-coupling medium at a propagation angle. In one example, the waveguide may contain one or more electrodes onto which one or more voltages may be applied. The magnitude of the propagation angle may be electronically controlled by altered by controlling or altering the magnitude of the one or more applied voltages.
Abstract:
According to embodiments of the present invention, an optical device is provided. The optical device includes a waveguide structure including a floating gate, and an optical waveguide arranged spaced apart from the floating gate, wherein the optical waveguide overlaps with the floating gate, a carrier injection portion arranged spaced apart from the floating gate, and an electrode arrangement, wherein, in response to a first voltage difference applied to the electrode arrangement, the optical device is configured to inject charge carriers from the carrier injection portion to the floating gate to cause a change in refractive index of the waveguide structure, and wherein, in response to a second voltage difference applied to the electrode arrangement, the optical device is configured to drive the charge carriers from the floating gate to the optical waveguide to deplete the charge carriers.
Abstract:
Ring modulators based on interdigitated junctions may be driven in full or partial standing wave mode and, active regions (providing the modulation) and light-absorptive regions (e.g. providing electrical conduction) are placed in a pattern inside a resonant cavity in order to match the maxima and minima of the optical field, respectively. The pattern may be periodic to match the periodicity of a typical electromagnetic field which is periodic with the wavelength. It may also be aperiodic in the case that the cross-section or materials are engineered along the direction of propagation such that the propagation constant (and thus wavelength, i.e. optical wave “local periodicity”) change along the propagation direction.
Abstract:
An example optical polarization controller can include a substantially planar substrate and a waveguide unit cell formed on the substantially planar substrate. The waveguide unit cell can include a first out-of-plane waveguide portion and a second out-of-plane waveguide portion coupled to the first out-of-plane waveguide portion. Each of the first and second out-of-plane waveguide portions can respectively include a core material layer arranged between a first optical cladding layer having a first stress-response property and a second optical cladding layer having a second stress-response property. The first and second stress-response properties can be different such that each of the first and second out-of-plane waveguide portions is deflected by a deflection angle.
Abstract:
The present invention is based on a two-dimensional photonic crystal in which are inserted, in a controlled manner, defects that originate the waveguides and the resonant cavity that integrate the device. Its main function is to provide the control of the passage of an electromagnetic signal over a communications channel, blocking (state off) or allowing (state on) the passage of the signal. It also has the function of changing the propagation direction of an electromagnetic signal by an angle of 60 degrees, offering greater flexibility in the design of integrated optical systems. The operating principle of the device is associated with the excitation of dipole modes in the resonant cavity, which is based on a magneto-optical material. When the switch is under the influence of an external DC magnetic field H0, a rotating dipole mode excited in the cavity allows the passage of the input signal to the output (state on), whereas without the application of H0, a stationary dipole mode excited in the cavity, with the nodes aligned to the output waveguide, prevents the passage of the input signal to the output (state off).
Abstract:
A plasmonic device and an apparatus and method for generating a surface plasmon polariton (SPP) mode using the plasmonic device are disclosed herein. The plasmonic device includes a first plasmonic waveguide and a second plasmonic waveguide. The first plasmonic waveguide is made of a strip-shaped metal material forming at least one pair of first metal-dielectric interfaces along with a dielectric layer, and extends from an input location to a gap start location. The second plasmonic waveguide is made of a strip-shaped metal material forming at least one pair of second metal-dielectric interfaces in planes identical to those of the at least one pair of first metal-dielectric interfaces of the first plasmonic waveguide, and extends from a gap end location, spaced apart from the gap start location by the length of a gap along the propagation direction of the SPP, to an SPP output location.
Abstract:
Systems and methods are presented for modulating a beam of radiation, such that the modulated beam exhibits substantially null residual amplitude modulation (RAM). An electro-optical modulator is presented that includes a waveguide, a first region associated with the waveguide and a second region associated with the waveguide. The waveguide is designed to guide a beam of radiation. A first electric potential applied to the first region causes a first modulation to the beam of radiation while a second electric potential applied to the second region causes a second modulation to the beam of radiation. The first modulation combined with the second modulation provides substantially null residual amplitude modulation of the beam of radiation.
Abstract:
An optical device, comprising: a waveguide substrate in which two waveguides are formed along a waveguide plane, and a first emission light beam and a second emission light beam which are emitted from the two waveguides in parallel with each other; and a condensing member including a first condensing element which emits the first emission light beam after collimation, and a second condensing element which emits the second emission light beam after collimation, the first condensing element and the second condensing element being formed in an element installation surface with a constant interval, wherein when an angle made by an emission end surface of the waveguide substrate in the waveguide plane and a waveguide direction that is an extension direction of the waveguide is set as θ, a relationship of 0°
Abstract:
Methods and systems for a low-parasitic silicon high-speed phase modulator are disclosed and may include fabricating an optical phase modulator that comprises a PN junction waveguide formed in a silicon layer, wherein the silicon layer may be on an oxide layer and the oxide layer may be on a silicon substrate. The PN junction waveguide may have p-doped and n-doped regions on opposite sides along a length of the PN junction waveguide, and portions of the p-doped and n-doped regions may be removed. Contacts may be formed on remaining portions of the p-doped and n-doped regions. Portions of the p-doped and n-doped regions may be removed symmetrically about the PN junction waveguide. Portions of the p-doped and n-doped regions may be removed in a staggered fashion along the length of the PN junction waveguide. Etch transition features may be removed along the p-doped and n-doped regions.