Abstract:
According to embodiments of the present invention, a method for forming an optical modulator is provided. The method includes providing a substrate, implanting dopants of a first conductivity type into the substrate to form a first doped region, implanting dopants of a second conductivity type into the substrate to form a second doped region, wherein a portion of the second doped region is formed over and overlaps with a portion of the first doped region to form a junction between the respective portions of the first doped region and the second doped region, and wherein a remaining portion of the second doped region is located outside of the junction, and forming a ridge waveguide, wherein the ridge waveguide overlaps with at least a part of the junction.
Abstract:
According to embodiments of the present invention, an optical device is provided. The optical device includes a waveguide structure including a floating gate, and an optical waveguide arranged spaced apart from the floating gate, wherein the optical waveguide overlaps with the floating gate, a carrier injection portion arranged spaced apart from the floating gate, and an electrode arrangement, wherein, in response to a first voltage difference applied to the electrode arrangement, the optical device is configured to inject charge carriers from the carrier injection portion to the floating gate to cause a change in refractive index of the waveguide structure, and wherein, in response to a second voltage difference applied to the electrode arrangement, the optical device is configured to drive the charge carriers from the floating gate to the optical waveguide to deplete the charge carriers.
Abstract:
An optical light source is provided. The optical light source includes a waveguide including two reflectors arranged spaced apart from each other to define an optical cavity therebetween, an optical gain medium, and a coupling structure arranged to couple light between the optical cavity and the optical gain medium.
Abstract:
According to embodiments of the present invention, a photodetector arrangement is provided. The photodetector arrangement includes a plurality of germanium-based photodetectors, each germanium-based photodetector configured to receive an optical signal and to generate an electrical signal in response to the received optical signal, and an electrode arrangement arranged to conduct the electrical signals.
Abstract:
According to embodiments of the present invention, a method for forming an optical modulator is provided. The method includes providing a substrate, implanting dopants of a first conductivity type into the substrate to form a first doped region, implanting dopants of a second conductivity type into the substrate to form a second doped region, wherein a portion of the second doped region is formed over and overlaps with a portion of the first doped region to form a junction between the respective portions of the first doped region and the second doped region, and wherein a remaining portion of the second doped region is located outside of the junction, and forming a ridge waveguide, wherein the ridge waveguide overlaps with at least a part of the junction.
Abstract:
According to embodiments of the present invention, a photodetector arrangement is provided. The photodetector arrangement includes a plurality of germanium-based photodetectors, each germanium-based photodetector configured to receive an optical signal and to generate an electrical signal in response to the received optical signal, and an electrode arrangement arranged to conduct the electrical signals.
Abstract:
According to embodiments of the present invention, an optical device is provided. The optical device includes a waveguide structure including a floating gate, and an optical waveguide arranged spaced apart from the floating gate, wherein the optical waveguide overlaps with the floating gate, a carrier injection portion arranged spaced apart from the floating gate, and an electrode arrangement, wherein, in response to a first voltage difference applied to the electrode arrangement, the optical device is configured to inject charge carriers from the carrier injection portion to the floating gate to cause a change in refractive index of the waveguide structure, and wherein, in response to a second voltage difference applied to the electrode arrangement, the optical device is configured to drive the charge carriers from the floating gate to the optical waveguide to deplete the charge carriers.
Abstract:
An optical sensing system may include a light separation element configured to separate an input light into a plurality of sliced lights and a first resonator configured to receive one sliced light of the plurality of sliced lights. An effective refractive index of the first resonator may be changeable in response to a change in a refractive index of a cladding of the first resonator, a second resonator coupled to the first resonator and a detector configured to measure an intensity of the sliced light, the intensity of the sliced light based on a difference between a resonant wavelength of the first resonator and a resonant wavelength of the second resonator. The difference between a resonant wavelength of the first resonator and a resonant wavelength of the second resonator may be based on the effective refractive index of the first resonator.
Abstract:
An optical sensing system may include a light separation element configured to separate an input light into a plurality of sliced lights and a first resonator configured to receive one sliced light of the plurality of sliced lights. An effective refractive index of the first resonator may be changeable in response to a change in a refractive index of a cladding of the first resonator, a second resonator coupled to the first resonator and a detector configured to measure an intensity of the sliced light, the intensity of the sliced light based on a difference between a resonant wavelength of the first resonator and a resonant wavelength of the second resonator. The difference between a resonant wavelength of the first resonator and a resonant wavelength of the second resonator may be based on the effective refractive index of the first resonator.