Abstract:
An offset value setting processing, in which whether or not all wheel velocities of front wheels and rear wheels are 0 km/h is determined and whether or not a pressing amount of an accelerator pedal is 0% is determined. If it is determined that the vehicle velocity is 0 km/h and that the pressing amount of the accelerator pedal is 0%, a current detection signal voltage at that time is set to an offset voltage. Thus, the offset voltage value is reset and set again if such a condition is established. Consequently, the offset voltage value including the amount of an error due to a temperature drift is set up, thereby preventing drop in control accuracy due to that error.
Abstract:
An ECU estimates the temperatures of the heat generating portions provided in a drive force transmission system, or a transaxle, a rear differential, and a torque coupling, in correspondence with not only the rotational speed (the differential rotational speed) of each heat generating portion and the torque transmission rate of the torque coupling but also the outside temperature detected by an outside temperature sensor. If the estimated temperature of any of the heat generating portions exceeds a respective predetermined temperature, the ECU controls operation of the torque coupling to suppress overheating of the heat generating portion. That is, the temperature of each heat generating portion is accurately detected through a simplified structure and overheating of the heat generating portion is effectively suppressed.
Abstract:
There is provided a starting clutch control apparatus which is capable of controlling transmission torque of a starting clutch according to changes in accelerator operated amount without preparing a plurality of data maps of torque coefficients in advance. A clutch controller determines a clutch instruction torque based on torque coefficient, engine speed, and engine speed correction amount, and controls the engagement state of the starting clutch according to the clutch instruction torque. Therefore, it is possible to control the engagement state of the starting clutch in response to sudden operation of an accelerator, and to finely control the degree of engine blow-up according to an accelerator operated amount. Only one data map for determining the torque coefficient according to a rotational speed ratio of a clutch input shaft to a clutch output shaft is required to be stored in a data storage section, and hence it is possible to prevent an increase in the amount of data stored in the data storage section.
Abstract:
The present invention provides a running control device for an industrial vehicle that has superior driving operability and that allows easy starting and stopping on road surfaces that have sloped or stepped surface. The running control device for an industrial vehicle includes an engine, a sensor that detects an operation amount of an accelerator member, a transmission that has a forward clutch and reverse clutch, a brake that applies braking to the vehicle, and a controller. The controller simultaneously controls the engine revolutions, the engaging force of the forward clutch and reverse clutch and the braking force of the brake in accordance with the operation amount.
Abstract:
A torque transfer mechanism includes a multi-plate clutch assembly that is operably disposed between a first rotary and a second rotary member. A control system determines a desired quantity of torque to deliver to the second rotary member and controls the clutch to produce the desired torque.
Abstract:
A rough road detection system for a vehicle comprises a first acceleration sensor that measures vertical acceleration of a component of the vehicle. An adaptive acceleration limits module determines a first acceleration limit based upon a speed of the vehicle. A limit comparison module generates a rough road signal based on a comparison of the first acceleration limit from the adaptive acceleration limits module and the measured acceleration from the first acceleration sensor.
Abstract:
A gear change control device is provided for a straddle-type vehicle having a clutch and a transmission. The device includes a clutch actuator configured to engage and disengage the clutch. A transmission actuator is configured to change a gear of the transmission. At least one sensor is configured to sense an operational condition of the straddle type vehicle. At least one switch is configured to generate a gear change command. A controller is operatively connected to the clutch actuator, the transmission actuator, the at least one sensor, and the at least one switch. The controller is configured to change gears in response to the gear change command and during the gear change reengage the clutch under either a first control routine or second, different control routine based upon the operational condition of the straddle-type vehicle determined by the at least one sensor.
Abstract:
A control for an automated mechanical transmission system (10) including, an automated master clutch (20/39). The system controller (46) will sense vehicle operating conditions (54) to command the most appropriate of dynamic shifts performed with the master clutch engaged or dynamic shifts performed by disengaging and then re-engaging the master clutch.
Abstract:
The present invention broadly comprises a method for the advance determination of an overload of an automatically actuated clutch of a vehicle during a slippage phase and to prevent the overload. The method determines the energy introduced into the clutch during a predetermined first time span of the slippage phase and/or acquires the current temperature of the clutch and, on the basis of the anticipated second time span of the slippage phase, determines the anticipated energy introduction into the clutch and/or the anticipated clutch temperature and, as a function of the anticipated energy introduction and/or the anticipated clutch temperature, takes measures to prevent the overload.
Abstract:
An automotive vehicle driveline includes an internal combustion engine for transmitting input torque to a hydraulically-actuated input clutch, and having a throttle controlled by a displaceable accelerator pedal. A transmission produces multiple gear ratios between the clutch and an output. A method for controlling operation of the clutch includes determining a magnitude of clutch pressure that would produce a torque capacity of the input clutch equal to the current magnitude of input torque; if no transient condition occurs, pressurizing the clutch at a magnitude of pressure that produces a predetermined slip of the input clutch at the current magnitude of input torque; and if a transient condition occurs, holding and/or reducing the determined input clutch pressure such that slip occurs at the input clutch.