HIGH PERFORMANCE NANOSHEET FABRICATION METHOD WITH ENHANCED HIGH MOBILITY CHANNEL ELEMENTS

    公开(公告)号:US20220020744A1

    公开(公告)日:2022-01-20

    申请号:US17447506

    申请日:2021-09-13

    摘要: In a method for forming a semiconductor device, an epitaxial layer stack is formed over a substrate. The epitaxial layer stack includes intermediate layers, one or more first nano layers with a first bandgap value and one or more second nano layers with a second bandgap value. Trenches are formed in the epitaxial layer stack to separate the epitaxial layer stack into sub-stacks such that the one or more first nano layers are separated into first nano-channels, and the one or more second nano layers are separated into second nano-channels. The intermediate layers are recessed so that the first nano-channels and the second nano-channels in each of the sub-stacks protrude from sidewalls of the intermediate layers. Top source/drain (S/D) regions are formed in the trenches and in direct contact with the first nano-channels. Bottom source/drain (S/D) regions are formed in the trenches and in direct contact with the second nano-channels.

    Method for manufacturing a structure for forming a tridimensional monolithic integrated circuit

    公开(公告)号:US11205702B2

    公开(公告)日:2021-12-21

    申请号:US16086275

    申请日:2017-03-31

    申请人: Soitec

    摘要: A method for manufacturing a structure comprising a first substrate comprising at least one electronic component likely to be damaged by a temperature higher than 400° C. and a semiconductor layer extending on the first substrate comprises: (a) providing a first bonding metal layer on the first substrate, (b) providing a second substrate comprising successively: a semiconductor base substrate, a stack of a plurality of semiconductor epitaxial layers, a layer of SixGe1-x, with 0≤x≤1 being located at the surface of said stack opposite to the base substrate, and a second bonding metal layer, (c) bonding the first substrate and the second substrate through the first and second bonding metal layers at a temperature lower than or equal to 400° C., and (d) removing a part of the second substrate so as to transfer the layer of SixGe1-x on the first substrate using a selective etching process.

    Gate induced drain leakage reduction in FinFETs

    公开(公告)号:US11177366B2

    公开(公告)日:2021-11-16

    申请号:US16740958

    申请日:2020-01-13

    摘要: A method of forming a semiconductor device that includes forming an inner dielectric spacer and outer dielectric spacer combination structure on a sacrificial gate structure that is present on a fin structure, wherein the inner dielectric spacer and outer dielectric spacer combination structure separates source and drain regions from the sacrificial gate structure. The method further includes removing the inner sidewall dielectric spacer; and forming a channel epitaxial wrap around layer on the portion of the fin structure that is exposed by removing the inner sidewall dielectric spacer. The method further includes removing the sacrificial gate structure to provide a gate opening to a channel portion of the fin structure, wherein the gate opening exposes the channel epitaxial wrap around layer; and forming a functional gate structure within the gate opening.