Abstract:
A gas porous media which comprises a material having a low coefficient of thermal expansion that is capable of retaining 99.99% or more of particles of a size of about 0.003 microns and larger at 0.2 slpm/cm2 while demonstrating a permeability of 3.5×10−12 m2 and a porosity of around 62% is disclosed. The porous media can be fabricated into a frame that is capable of retaining 99.9999999% of particles greater than 0.003 μm in diameter at 8.3 sccm/cm2 with a permeability of 3.0×10−13 m2 and a porosity of around 53%. The porous medias can be tailored by changing the raw materials and process to yield media with a range of porosities and that exhibit permeability between 1.0E−13 and 1.0E−11 m2. The porous media are used in frames for supporting a pellicle and a reticle in a parallel relationship to each other. The frames may comprise porous media in its entirety or the porous media can be fabricated and sealed into a solid support frame.
Abstract translation:一种气体多孔介质,其包括具有低热膨胀系数的材料,其能够以0.2slpm / cm 2保持尺寸为约0.003微米和更大的颗粒的99.99%或更多,同时展示 渗透率为3.5×10 -2 -2 2,孔隙率为约62%。 多孔介质可以制成框架,该框架能够以8.3sccm / cm 2保持直径大于0.003μm的颗粒的99.9999999%,渗透率为3.0×10 13, SUP> m 2,孔隙率约53%。 多孔介质可以通过改变原料和工艺来制备,以产生具有一定范围的孔隙率的介质,并且其表现出在1.0E-13和1.0E-011之间的渗透率 2 SUP>。 多孔介质用于框架中,以彼此平行的关系支撑防护薄膜组件和掩模版。 框架可以包括整体上的多孔介质,或者可以制造多孔介质并将其密封成固体支撑框架。
Abstract:
A connector apparatus is provided which is configured to replace a separation module in a system for dispensing a fluid. When it is desired to purge the system of a dispensed fluid, the connector apparatus, having the same configuration of an inlet and an outlet as the separation module, replaces the separation module and a purging fluid is passed through the system.
Abstract:
Systems and methods for digitally controlling sensors. In one embodiment, a digital controller for a capacitance diaphragm gauge is embedded in a digital signal processor (DSP). The controller receives digitized input from a sensor AFE via a variable gain module, a zero offset module and an analog-to-digital converter. The controller automatically calibrates the received input by adjusting the variable gain and zero offset modules. The controller also monitors and adjusts a heater assembly to maintain an appropriate temperature at the sensor. The controller utilizes a kernel module that allocates processing resources to the various tasks of a gauge controller module. The kernel module repetitively executes iterations of a loop, wherein in each iteration, all of a set of high priority tasks are performed and one of a set of lower priority tasks are performed. The controller module thereby provides sensor measurement output at precisely periodic intervals, while performing ancillary functions as well.
Abstract:
Methods of inserting and removing species from substrates utilizing pressure-vent cycling are revealed in embodiments of the invention. Various embodiments introduce a fluid to a vessel containing the substrate while setting pressure at an elevated level. The pressure is maintained at the elevated level for a predetermined period of time, the lowered by removing fluid from the vessel. The steps of introducing fluid, maintaining pressure, and lowering pressure are repeated at least once. Embodiments of the invention may allow a species to be removed from the voids of a substrate, or allow a new species to be inserted into the voids. Particular embodiments also have special application to preconditioning, activating, and/or regenerating gas purification substrates, or removing and/or delivering species with respect to semiconductor substrates. Embodiments of the invention allow faster transport of species to and from substrates with less use of purging or filling fluids.
Abstract:
The present invention discloses a method for the removal of a number of molecular contaminants from surfaces within a device. A purge gas containing oxygen and/or water is introduced into the interior of the device, contacting at least a portion of the interior surfaces. A contaminated purge gas is produced by transferring a portion of the contamination from the interior surfaces into the purge gas. The contaminated purge gas is removed from the device and the process is continued until the contaminant concentration in the contaminated purge gas is below a predetermined level.
Abstract:
The present invention discloses a method for the removal of a number of molecular contaminants from surfaces within a device. A purge gas containing oxygen and/or water is introduced into the interior of the device, contacting at least a portion of the interior surfaces. A contaminated purge gas is produced by transferring a portion of the contamination from the interior surfaces into the purge gas. The contaminated purge gas is removed from the device and the process is continued until the contaminant concentration in the contaminated purge gas is below a predetermined level.
Abstract:
A method for forming dendritic metal powders, comprising the steps of: (1) heating a powder comprising non-dendritic particles, under conditions suitable for initial stage sintering, to form a lightly sintered material; and (2) breaking the lightly sintered material to form a powder comprising dendritic particles. In one embodiment, the lightly sintered material is broken by brushing the material through a screen. Another aspect of the present invention comprises the dendritic particles that are produced by the method described above. These particles can comprise any suitable metal, such as transition metals, rare earth metals, main group metals or metalloids or an alloy of two or more such metals. The particles can also comprise a ceramic material, such as a metal oxide. These particles are characterized by a dendritic, highly anisotropic, morphology arising from the fusion of substantially non-dendritic particles, and by a low apparent density relative to the substantially non-dendritic starting material. The present dendritic particles can be of high purity, and substantially free of carbon contamination.
Abstract:
Embodiments of the present invention are directed to an apparatus that can be used to treat fluids. The apparatus can include a housing with an inlet for receiving a process fluid to be treated, a surface within the housing for treating the process fluid that can be wet by the process fluid, and an outlet for removing treated process fluid. The housing includes a vent that aids in the removal of fluid components that separate from the process fluid. Removal of these separated fluids improves the efficiency and contact of the process fluid with the surfaces in the housing for treating the process fluid.
Abstract:
Fluid separation assembly that allows easy and fast change-out even in confined spaces, and also minimizes or eliminates leakage during change-out. A fluid separation unit having a housing containing separation means, the housing having an inlet and an outlet spaced from the inlet, each including a fitting for attachment of the housing to a manifold or other device allowing fluid communication through the separation means to a point of use is provided. The fittings are designed for quick connect/disconnect, and for minimal or no leakage. The fittings may be on opposite ends, with top and bottom fittings of different configurations, thereby ensuring proper installation of the assembly. The particular medium to be separated is not particularly limited, and can include slurries, fluids including water, and pre-loaded chromatography columns.
Abstract:
A clean, high efficiency, low pressure drop, adsorptive filter material that is porous and includes an acidic functional group. The filter can include, for example, a non-woven filter composite has a porous sulfonated divinyl benzene styrene copolymer beads having sulfonic acid functional side groups. The non-woven filter is used to remove molecular bases, including ammonia, organic amines, inides, aminoalcohols, alcoholoamines from the atmosphere used in semiconductor fabrication and other processes that require uncontaminated gaseous environments of high quality.