Abstract:
A measurement technique determines the physical features of a tire such as a determination of the deformation a tire undergoes during use. The measurement technique utilizes a first belt, or first and second belts, in the tire reinforced with a plurality of metallic wires and involves the steps of providing a signal between a first and a second metallic wire associated with the first or first and second belts. The measurement technique determines a real part and an imaginary part of the impedance between the first and second metallic wires, which is proportional to the forces acting on the tire.
Abstract:
The present invention refers to a switching power supply, in particular to a power factor corrector, and more particularly to a circuit for the programmable protection against output over-voltages. It also refers to a power factor corrector integrated circuit comprising a circuit for the programmable protection against output over-voltages. In one embodiment the circuit for the programmable protection against output over-voltages in a power Factor corrector comprises means for detecting a signal proportional to the output voltage; a first preset reference voltage; a second preset reference voltage; a transconductance amplifier which receives in input the signal proportional to the output voltage and the first preset reference voltage; a comparator which receives in input the signal proportional to the output voltage and the second preset reference voltage; means suitable for absorbing a current coming from the signal proportional to the output voltage.
Abstract:
The invention relates to a method of automatically shifting from the fabrication of an EPROM cell to the fabrication of a ROM cell, which method is specifically intended for semiconductor electronic circuits having a resident memory and is of the type wherein the structure of at least one memory cell transistor is defined on a semiconductor substrate using photolithographic techniques including an active area and a channel region, the cell being adapted to acquire a logic state selected by the user. Advantageously, the conductivity of the active area is changed to suit the logical contents that the cell is intended to contain.
Abstract:
A control device for a switching voltage regulator includes: a first detector of a first measurement signal indicative of a current flowing in a first side of the regulator, and providing a first comparison signal as a function of a first threshold; a second detector of a second measurement signal indicative of a current flowing in a second side of the regulator, and providing a second comparison signal as a function of a second threshold; a driving-signal generation circuit which generates a switching control signal from the first comparison signal to drive the switching circuit; a calibration circuit which receives an alert signal indicative of the first threshold, compares the alert signal and the second comparison signal, and provides a calibration signal in response; and a feedback circuit which provides a control signal as a function of an error signal and of the calibration signal.
Abstract:
A system includes lighting devices coupled to output supply pins, a microcontroller circuit, and a driver circuit, which receives data therefrom, and switches coupled in series to the lighting devices. The driver circuit includes output supply pins and selectively propagates a supply voltage to the output supply pins to provide respective pulse-width modulated supply signals at the output supply pins. The driver circuit computes duty-cycle values of the pulse-width modulated supply signals as a function of the data received from the microcontroller circuit. The lighting devices include at least one subset coupled to the same output supply pin. The microcontroller individually controls the switches via respective control signals to individually adjust a brightness of the lighting devices in the at least one subset of lighting devices.
Abstract:
A demodulator is provided for demodulating an amplitude-modulated input signal defined by a carrier signal having a carrier frequency modulated by a modulating signal, the demodulator including an amplifier stage having a gain and structured to receive the amplitude-modulated input signal, and a gain control stage coupled to the amplifier stage and configured to vary the gain of the amplifier stage according to the carrier frequency of the carrier signal.
Abstract:
A driver circuit may include a first node, and a first circuit to generate on the first node an inverted replica of an input signal during driver switching between a first supply voltage and a first reference voltage, the inverted replica having a threshold voltage value based upon a second reference voltage greater than the first supply voltage. The driver circuit may include a cascode stage to be controlled by the second reference voltage and to be coupled between a second supply voltage and the first node, a delay circuit to generate a delayed replica of the input signal, an amplifier, and a switching network to couple the control terminal of the active load transistor to one of the first reference voltage and the first node based upon the input signal.
Abstract:
A microfluidic device includes a microfluidic circuit, having an axis, and an electric field generator, arranged to establish an electric field (E) within at least a section of the microfluidic circuit, the electric field (E) being oriented transversally to the axis. The electric field is used to locally concentrate charged molecules, thus increasing the reaction rate.
Abstract:
A process is described for integrating, on an inert substrate, a device having at least one passive component and one active component. The process comprises: deposition of a protection dielectric layer on the inert substrate; formation of a polysilicon island on the protection dielectric layer; integration of the active component on the polysilicon island; deposition of the covering dielectric layer on the protection dielectric layer and on the active component; integration of the passive component on the covering dielectric layer; formation of first contact structures in openings realised in the covering dielectric layer in correspondence with active regions of the active component; and formation of second contact structures in correspondence with the passive component. An integrated device obtained through this process is also described.
Abstract:
A method of operating a control device includes performing an open load test or a current leakage test. The open load test includes activating a first current and then a second current and sensing with the first current and the second current activated, respectively, a first voltage drop and a second voltage drop between charge distribution pins and charge sensing pins of the control device. Respective differences are calculated between the first voltage drop and the second voltage drop sensed with the first current and the second current activated, respectively. These differences are compared with respective thresholds and an open circuit condition is declared as a result of the differences calculated reaching these thresholds.