Abstract:
A structure, method of manufacturing a structure, and methods of using a structure including a graphene sheet is disclosed. According to one aspect, the grapheme sheet is provided, on one of the faces of the structure, with a plurality of metal pins. The metal pins being separated from one another by a dielectric medium chosen from air and dielectric materials. The method including the steps of synthesizing, by vapor phase catalytic growth, the graphene sheet on a plurality of metal pins that are disposed on a membrane made from dielectric material or integrated in the membrane. The growth being catalyzed by the metal pins. According to some aspects, the membrane is removed from the structure. The structure may be used, for example, in the fields of micro- and nanoelectronics, micro- and nanoelectronic engineering, spintronics, photovoltaics, light emitting diode display, or the like.
Abstract:
A semiconductor structure includes a support and at least one block provided on the support. The block includes a stack including alternating layers based on a first semiconductor material and layers based on a second semiconductor material different from the first material, the layers presenting greater dimensions than layers such that the stack has a lateral tooth profile and a plurality of spacers filling the spaces formed by the tooth profile, the spacers being made of a third material different from the first material such that each of the lateral faces of the block presents alternating lateral bands based on the first material and alternating lateral bands based on the third material. At least one of the lateral faces of the block is partially coated with a material promoting the growth of nanotubes or nanowires, the catalyst material exclusively coating the lateral bands based on the first material or exclusively coating the lateral bands based on the third material.
Abstract:
A support for a thin element in an electrically conducting or semi-conducting material, one face of which is intended to be put into contact with a liquid or gas medium, the support has a first part provided with a central through-passage with a longitudinal axis, said passage including at least one first and one second portion with a different diameter connected to each other through a shoulder, said shoulder being intended for supporting said thin element; a second part penetrating into the passage with the end opposite to the one intended to be exposed to the liquid solution, capable of maintaining the thin element on the shoulder; and a seal between the thin element and the shoulder.
Abstract:
A support for a thin element in an electrically conducting or semi-conducting material, one face of which is intended to be put into contact with a liquid or gas medium, the support has a first part provided with a central through-passage with a longitudinal axis, said passage including at least one first and one second portion with a different diameter connected to each other through a shoulder, said shoulder being intended for supporting said thin element; a second part penetrating into the passage with the end opposite to the one intended to be exposed to the liquid solution, capable of maintaining the thin element on the shoulder; and a seal between the thin element and the shoulder.
Abstract:
A method for manufacturing an OLED and an electrode for an OLED, said electrode comprising a surface comprising a first dielectric nanostructuration and a second metal nanostructuration, on a substrate, wherein the following successive steps are carried out: a) a metal layer is deposited on a planar surface of a substrate; b) on the metal layer, a dielectric layer comprising said first dielectric nanostructuration which includes cavities which extend from the upper surface of the dielectric layer as far as the upper surface of the metal layer, is prepared; c) the cavities of the first dielectric nanostructuration are at least partially filled with a metal, whereby the second metal nanostructuration is obtained.
Abstract:
A semiconductor structure includes a support and at least one block provided on the support. The block includes a stack including alternating layers based on a first semiconductor material and layers based on a second semiconductor material different from the first material, the layers presenting greater dimensions than layers such that the stack has a lateral tooth profile and a plurality of spacers filling the spaces formed by the tooth profile, the spacers being made of a third material different from the first material such that each of the lateral faces of the block presents alternating lateral bands based on the first material and alternating lateral bands based on the third material. At least one of the lateral faces of the block is partially coated with a material promoting the growth of nanotubes or nanowires, the catalyst material exclusively coating the lateral bands based on the first material or exclusively coating the lateral bands based on the third material.
Abstract:
A method for creating electrically conducting or semiconducting patterns on a textured surface including plural reliefs of amplitude greater than or equal to 100 nanometers, including: preparing a substrate during which at least the textured surface of the substrate is made electrically conducting; coating during which at least one layer of an imprintable material is laid on the textured surface, made electrically conducting, of the substrate; pressing a mold including valleys or protrusions to transfer the valleys or the protrusions of the mold into the imprintable material to form patterns therein; removing the mold while leaving the imprint of the patterns in the imprintable material; exposing the textured surface, made electrically conducting, of the substrate, at a bottom of the patterns; and electrically depositing an electrically conducting or semiconducting material into the patterns to form conducting or semiconducting patterns.
Abstract:
A method for creating electrically conducting or semiconducting patterns on a textured surface including plural reliefs of amplitude greater than or equal to 100 nanometers, including: preparing a substrate during which at least the textured surface of the substrate is made electrically conducting; coating during which at least one layer of an imprintable material is laid on the textured surface, made electrically conducting, of the substrate; pressing a mold including valleys or protrusions to transfer the valleys or the protrusions of the mold into the imprintable material to form patterns therein; removing the mold while leaving the imprint of the patterns in the imprintable material; exposing the textured surface, made electrically conducting, of the substrate, at a bottom of the patterns; and electrically depositing an electrically conducting or semiconducting material into the patterns to form conducting or semiconducting patterns.
Abstract:
A structure, method of manufacturing a structure, and methods of using a structure including a graphene sheet is disclosed. According to one aspect, the grapheme sheet is provided, on one of the faces of the structure, with a plurality of metal pins. The metal pins being separated from one another by a dielectric medium chosen from air and dielectric materials. The method including the steps of synthesizing, by vapor phase catalytic growth, the graphene sheet on a plurality of metal pins that are disposed on a membrane made from dielectric material or integrated in the membrane. The growth being catalysed by the metal pins. According to some aspects, the membrane is removed from the structure. The structure may be used, for example, in the fields of micro- and nanoelectronics, micro- and nanoelectronic engineering, spintronics, photovoltaics, light emitting diode display, or the like.