Abstract:
A method of fabricating integrated circuit wafers, in accordance with this invention comprises the following steps. Provide an integrated circuit wafer having devices formed therein covered with a metal layer and a photoresist layer over the metal layer which is selectively exposed and developed forming a photoresist mask. Introduce the wafer into a multi-chamber system, patterning the metal layer by etching and then exposing the mask to light in a cooled chamber wherein the light is derived from a source selected from a mercury lamp and a laser filtered to remove red and infrared light therefrom before exposure of the wafer thereto. The chamber is cooled by a refrigerant selected from water and liquefied gas. Then remove the wafer, and load it into a photoresist stripping tank to remove the photoresist mask with a wet photoresist stripper. Place the wafer in a batch type plasma chamber after removing the photoresist mask. Establish a plasma discharge in the batch type plasma chamber for a first time while flowing oxygen gas through the batch type plasma chamber. Terminate the plasma discharge, and then remove the wafer from the batch type plasma chamber.
Abstract:
A method for reducing the loss of silicon in a plasma assisted photoresist etching process including providing a silicon substrate including a polysilicon gate structure; masking a portion of the silicon substrate with photoresist to carry out an ion implantation process for forming source and drain regions; carrying out an ion implantation process; and, removing the photoresist according to at least one plasma assisted process wherein the at least one plasma assisted process comprises fluorine containing, oxygen, and hydrogen containing plasma source gases.
Abstract:
A wafer transfer robot for a wafer processing system, such as a wet bench system, and a method for utilizing the robot. The wafer transfer robot can be constructed by a robot arm that is equipped with a plurality of wafer blades each adapted for picking-up and carrying one of a plurality of wafers. The plurality of wafer blades each has a predetermined thickness, a top surface, a bottom surface and a predetermined spacing from adjacent wafer blades. A plurality of sensors, such as optical sensors, capacitance sensors or magnetic sensors, with at least one mounted on the bottom side of one of the plurality of wafer blades for sensing the presence of metal on a wafer carried on an adjacent wafer blade immediately below the one of the plurality of wafer blades.
Abstract:
A new method for detecting blind holes in the contact layer of a multi-chip semiconductor test wafer makes use of the fact that if the hole is not a blind hole, a subsequent etch step extends the hole a predetermined distance into the layer immediately underlying the contact layer. After a predetermined number of holes have been etched through the contact layer and for a predetermined distance into the layer underlying the contact layer, the contact layer is stripped to expose the holes in the underlying layer. These holes are scanned optically by a commercial apparatus that ordinarily detects wafer defects that resemble the holes. The missing holes are detected by comparing the holes of different chips on the test wafer. The test is particularly useful with a high density plasma etch because these holes typically have a very small diameter in relation to the thickness of the contact layer.
Abstract:
A method for removing a photoresist layer from a semiconductor substrate following a conventional dry etching step. A first wet chemical treatment strips the photoresist. A second dry ash with oxygen plasma completes the photoresist removal. To assure complete removal of photoresist imbedded on or within the material underlying the photoresist film, the semiconductor substrate is preheat treated to a temperature in the range of 150 to 250 degrees Centigrade to release the photoresist prior to the second dry ash with oxygen plasma operation. In particular, this method eliminates photoresist extrusion defects from occurring during a bond pad alloy operation.
Abstract:
The present invention describes a modified dry etching, or plasma ashing, method for removing photoresist residue which avoids corrosion of metal electrodes. The wafers are placed in a batch type plasma chamber and a radio frequency plasma is established while oxygen gas is flowed through the chamber. The radio frequency power is then removed and the wafers, still in the batch type plasma chamber, are baked either with no oxygen flow or with a low oxygen flow rate. The baking drives off chlorine and other ions which can cause metal corrosion. The wafers are then removed from the batch type plasma chamber and normal processing continues.
Abstract:
A method for reducing the loss of silicon in a plasma assisted photoresist etching process including providing a silicon substrate including a polysilicon gate structure; masking a portion of the silicon substrate with photoresist to carry out an ion implantation process for forming source and drain regions; carrying out an ion implantation process; and, removing the photoresist according to at least one plasma assisted process wherein the at least one plasma assisted process comprises fluorine containing, oxygen, and hydrogen containing plasma source gases.
Abstract:
There is first provided a substrate 10 and a target layer 12. There is then formed upon the target layer a patterned positive photoresist layer 14. There is then processed the target layer while employing the patterned positive photoresist layer as a mask layer, to thus form a processed target layer and a processed patterned positive photoresist layer. There is then photoexposed 18 the processed patterned positive photoresist layer to enhance its solubility. Finally, there is then stripped from the processed target layer the photoexposed processed patterned positive photoresist layer while employing a solvent.
Abstract:
A method for determining the number of contaminating particles in a process chamber is described. While the method is particularly suited for detecting particles in a metal etch chamber, the present invention novel method can be utilized in any other semiconductor process chambers as long as there is a particle contamination problem. The method is carried out by conducting at least two particle dislodging cycles each including a step of flowing at least one process gas used in the process into the chamber at a flow rate of at least 30 sccm, and then evacuating the at least one process gas from the chamber to a pressure of not higher than 1 mTorr. Typical process gas that can be utilized in a metal etch chamber includes Cl2, BCl3 and Ar. The process gas should be flown into the etch chamber until a chamber pressure of at least 6 mTorr is reached, and preferably until at least a chamber pressure of 8 mTorr is reached. After the particle dislodging cycles are conducted, the number of particles that have fallen onto a top surface of the substrate can be counted by a particle counter.
Abstract:
Within a method for fabricating a microelectronic fabrication there is first provided a substrate. There is then formed simultaneously within the substrate an alignment mark and an isolation trench formed employing a single etch method and to an identical depth within the substrate. There is then formed within the isolation trench an isolation region. Finally, there is then further processed the substrate while aligning the substrate while using the alignment mark in conjunction with a minimum of two alignment wavelengths. The method provides for enhanced efficiency when fabricating the microelectronic fabrication. The method contemplates a microelectronic fabrication fabricated employing the method.