摘要:
A MOS test structure is disclosed. A scribe line region is disposed on a substrate which has a first side and a second side opposite to the first side. An epitaxial layer is disposed on the first side, the doping well is disposed on the epitaxial layer and the doping region is disposed on the doping well. A trench gate of a first depth is disposed in the doping region, in the doping well and in the scribe line region. A conductive material fills the test via which has a second depth and an isolation covering the inner wall of the test via and is disposed in the doping region, in the doping well, in the epitaxial layer and in the scribe line region, to electrically connect to the epitaxial layer so that the test via is capable of testing the epitaxial layer and the substrate together.
摘要:
A method of forming a single sided conductor and a semiconductor device having the same is provided. The method includes providing a substrate having an opening. The opening exposes a sidewall and an opening base surface. A tilted mask layer is formed in the opening. The tilted mask layer exposes the sidewall and a portion of the opening base surface. A dielectric layer is formed on the exposed sidewall and the exposed opening base surface. Then, the tilted mask layer is removed, and a conductive layer is formed over the substrate.
摘要:
A test layout structure includes a substrate, a first oxide region of a first height, a second oxide region of a second height, a plurality of border regions, and a test layout pattern. The first oxide region is disposed on the substrate. The second oxide region is also disposed on the substrate and adjacent to the first oxide region. The first height is substantially different from the second height. A plurality of border regions are disposed between the first oxide region and the second oxide region. The test layout pattern includes a plurality of individual sections. A test region is disposed between two of the adjacent individual sections which are parallel to each other.
摘要:
The protuberant structure of the present invention includes a substrate and a protrusion disposed on the substrate. The protrusion has a top side, a bottom side and a tapered side wall disposed between the top side and the bottom side. The top side has an extremely small top width which is not greater than 32 nm.
摘要:
A trench MOS structure is provided. The trench MOS structure includes a substrate, an epitaxial layer, a trench, a gate isolation, a trench gate, a guard ring and a reinforcement structure within the guard ring. The substrate has a first conductivity type, a first side and a second side opposite to the first side. The epitaxial layer has the first conductivity type and is disposed on the first side. The trench is disposed in the epitaxial layer. The gate isolation covers the inner wall of the trench. The trench gate is disposed in the trench and has the first conductivity type. The guard ring has a second conductivity type and is disposed within the epitaxial layer. The reinforcement structure has an electrically insulating material and is disposed within the guard ring.
摘要:
A trench MOS structure is disclosed. The trench MOS structure includes a substrate, an epitaxial layer, a doping well, a doping region and a trench gate. The substrate has a first conductivity type, a first side and a second side opposite to the first side. The epitaxial layer has the first conductivity type and is disposed on the first side. The doping well has a second conductivity type and is disposed on the epitaxial layer. The doping region has the first conductivity type and is disposed on the doping well. The trench gate is partially disposed in the doping region. The trench gate has a bottle shaped profile with a top section smaller than a bottom section, both are partially disposed in the doping well. The bottom section of two adjacent trench gates results in a higher electrical field around the trench MOS structures.
摘要:
A MOS test structure is disclosed. A scribe line region is disposed on a substrate which has a first side and a second side opposite to the first side. An epitaxial layer is disposed on the first side, the doping well is disposed on the epitaxial layer and the doping region is disposed on the doping well. A trench gate of a first depth is disposed in the doping region, in the doping well and in the scribe line region. A conductive material fills the test via which has a second depth and an isolation covering the inner wall of the test via and is disposed in the doping region, in the doping well, in the epitaxial layer and in the scribe line region, to electrically connect to the epitaxial layer so that the test via is capable of testing the epitaxial layer and the substrate together.
摘要:
A trench MOS structure is provided. The trench MOS structure includes a substrate, an epitaxial layer, a trench, a gate isolation, a trench gate, a guard ring and a reinforcement structure within the guard ring. The substrate has a first conductivity type, a first side and a second side opposite to the first side. The epitaxial layer has the first conductivity type and is disposed on the first side. The trench is disposed in the epitaxial layer. The gate isolation covers the inner wall of the trench. The trench gate is disposed in the trench and has the first conductivity type. The guard ring has a second conductivity type and is disposed within the epitaxial layer. The reinforcement structure has an electrically insulating material and is disposed within the guard ring.
摘要:
A cuboidal protuberant structure is provided. The cuboidal protuberant structure includes a substrate and a protrusion disposed on the substrate. The protrusion has a vertical side wall with a rounded corner, a protuberant width and a protuberant length. At least one of the protuberant width and the protuberant length is not greater than 33 nm.
摘要:
A trench MOS structure is disclosed. The trench MOS structure includes a substrate, an epitaxial layer, a doping well, a doping region and a trench gate. The substrate has a first conductivity type, a first side and a second side opposite to the first side. The epitaxial layer has the first conductivity type and is disposed on the first side. The doping well has a second conductivity type and is disposed on the epitaxial layer. The doping region has the first conductivity type and is disposed on the doping well. The trench gate is partially disposed in the doping region. The trench gate has a bottle shaped profile with a top section smaller than a bottom section, both are partially disposed in the doping well. The bottom section of two adjacent trench gates results in a higher electrical field around the trench MOS structures.