摘要:
A method for making a silicon wafer includes the steps of generating and stabilizing embryos that become oxygen precipitates by succeeding thermal annealing applied during a semiconductor device manufacturing process. In the silicon wafer, embryos are substantially removed in a denuded zone, and embryos are distributed at a relatively higher concentration in a bulk region. Also, by controlling behaviors of embryos, a silicon wafer having a desired concentration profile of oxygen precipitates by succeeding thermal annealing is manufactured with high reliability and reproducibility.
摘要:
A method of forming a transistor induces stress in the channel region using a stress memorization technique (SMT). Impurities are implanted into a substrate adjacent a gate electrode structure to produce an amorphous region adjacent the channel region. The amorphous region is then recrystallized by forming a metal-oxide layer over the amorphous region, and then thermally treating the same. The crystallization creates compressive stress in the amorphous region. As a result, stress is induced in the channel region of the substrate located under the gate electrode structure.
摘要:
The manufacturing a semiconductor device includes providing a substrate supporting a gate electrode, amorphizing and doping the source/drain regions located on both sides of the gate electrode by performing a pre-amorphization implant (PAI) process and implanting C or N into the source/drain regions in or separately from the PAI process, forming a stress inducing layer on the substrate to cover the amorphized source/drain regions, and subsequently recrystallizing the source/drain regions by annealing the substrate. The stress inducing layer may then be removed. Also, the C or N may be implanted into the entirety of the source/drain regions after the regions have been amorphized, or only into upper portions of the amorphized source/drain regions.
摘要:
A method of manufacturing a transistor of a semiconductor device, the method including forming a gate pattern on a semiconductor substrate, forming a spacer on a sidewall of the gate pattern, wet etching the semiconductor substrate to form a first recess in the semiconductor substrate, wherein the first recess is adjacent to the spacer, and wet etching the first recess to form a second recess in the semiconductor substrate.
摘要:
The manufacturing a semiconductor device includes providing a substrate supporting a gate electrode, amorphizing and doping the source/drain regions located on both sides of the gate electrode by performing a pre-amorphization implant (PAI) process and implanting C or N into the source/drain regions in or separately from the PAI process, forming a stress inducing layer on the substrate to cover the amorphized source/drain regions, and subsequently recrystallizing the source/drain regions by annealing the substrate. The stress inducing layer may then be removed. Also, the C or N may be implanted into the entirety of the source/drain regions after the regions have been amorphized, or only into upper portions of the amorphized source/drain regions.
摘要:
A method of manufacturing a semiconductor device can be provided by forming a gate structure on a substrate and forming a diffusion barrier layer on the gate structure and the substrate, A stress layer can be formed on the diffusion barrier layer comprising a metal nitride or a metal oxide having a concentration of nitrogen or oxygen associated therewith. The stress layer can be heated to transform the stress layer into a tensile stress layer to reduce the concentration of the nitrogen or the oxygen in the stress layer. The tensile stress layer and the diffusion barrier layer can be removed.
摘要:
By using a two-step RTP (rapid thermal processing) process, the wafer is provided which has an ideal semiconductor device region secured by controlling fine oxygen precipitates and OiSFs (Oxidation Induced Stacking Fault) located on the surface region of the wafer. By performing the disclosed two-step rapid thermal process, the distribution of defects can be accurately controlled and an ideal device active zone can be formed up to a certain distance from the surfaces of the wafer. In addition, it is possible to maximize the internal gettering (IG) efficiency by enabling the oxygen precipitates and the bulk stacking faults to have constant densities in the depth direction in an internal region of the wafer, that is, the bulk region. In order to obtain the constant concentration profile of the oxygen precipitates and the bulk stacking faults in the bulk region, the wafer is subjected to the aforementioned two-step rapid thermal process in a predetermined mixed gas atmosphere.
摘要:
A method for making a silicon wafer includes the steps of generating and stabilizing embryos that become oxygen precipitates by succeeding thermal annealing applied during a semiconductor device manufacturing process. In the silicon wafer, embryos are substantially removed in a denuded zone, and embryos are distributed at a relatively higher concentration in a bulk region. Also, by controlling behaviors of embryos, a silicon wafer having a desired concentration profile of oxygen precipitates by succeeding thermal annealing is manufactured with high reliability and reproducibility.
摘要:
A semiconductor device is formed with a gate pattern formed on a substrate, and a recrystallized region having a stacking fault defect in the substrate at one side of the gate pattern. The semiconductor device can have a reduced leakage current and improved channel conductivity.
摘要:
A method of manufacturing a transistor of a semiconductor device, the method including forming a gate pattern on a semiconductor substrate, forming a spacer on a sidewall of the gate pattern, wet etching the semiconductor substrate to form a first recess in the semiconductor substrate, wherein the first recess is adjacent to the spacer, and wet etching the first recess to form a second recess in the semiconductor substrate.