Abstract:
A method of forming a silicon carbide transient voltage suppressor (TVS) assembly and a system for a transient voltage suppressor (TVS) assembly are provided. The TVS assembly includes a semiconductor die in a mesa structure that includes a first layer of a first wide band gap semiconductor having a conductivity of a first polarity, a second layer of the first or a second wide band gap semiconductor having a conductivity of a second polarity coupled in electrical contact with the first layer wherein the second polarity is different than the first polarity. The TVS assembly also includes a third layer of the first, the second, or a third wide band gap semiconductor having a conductivity of the first polarity coupled in electrical contact with the second layer. The layer having a conductivity of the second polarity is lightly doped relative to the layers having a conductivity of the first polarity.
Abstract:
A processing system for clearance estimation in a rotating machine includes one or more sensors and one or more digital signal processors for calculating the estimated clearance. The processing system may include techniques for obtaining real-time clearance estimates and techniques for obtaining averaged clearance estimates. Aspects of the processing system may also include a method of switching between real-time clearance estimates and averaged clearance estimates depending on the operating conditions of the rotating machine. Other aspects of the processing system include the use of two digital signal processors: a first digital signal processor configured to receive signals from a clearance sensor and perform a first set of high speed processing tasks, and a second digital signal processor configured to receive signals from the first digital signal processor and perform a second set of lower speed processing tasks.
Abstract:
A clearance measurement system is provided. The clearance measurement system includes a reference geometry disposed on a first object having an otherwise continuous surface geometry and a sensor disposed on a second object, wherein the sensor is configured to generate a first signal representative of a first sensed parameter from the first object and a second signal representative of a second sensed parameter from the reference geometry. The clearance measurement system also includes a processing unit configured to process the first and second signals to estimate a clearance between the first and second objects based upon a measurement difference between the first and second sensed parameters.
Abstract:
An apparatus includes a substrate and a plurality of conductive traces formed on the substrate. The conductive traces are doped with a concentration of an aluminum material forming a protective layer as a portion of the plurality of conductive traces to inhibit oxidation. A set of first metal contact pads are formed in contact with the plurality of conductive traces. The substrate, the plurality of conductive traces and the set of first metal contact pads define an electronic circuit board configured to operate at a temperature greater than 200 degrees Celsius. A high operating temperature electronic device is configured in electrical communication with the conductive traces defining an assembly configured to operate at a temperature greater than 200 degrees Celsius.
Abstract:
A method of forming a silicon carbide transient voltage suppressor (TVS) assembly and a system for a transient voltage suppressor (TVS) assembly are provided. The TVS assembly includes a semiconductor die in a mesa structure that includes a first layer of a first wide band gap semiconductor having a conductivity of a first polarity, a second layer of the first or a second wide band gap semiconductor having a conductivity of a second polarity coupled in electrical contact with the first layer wherein the second polarity is different than the first polarity. The TVS assembly also includes a third layer of the first, the second, or a third wide band gap semiconductor having a conductivity of the first polarity coupled in electrical contact with the second layer. The layer having a conductivity of the second polarity is lightly doped relative to the layers having a conductivity of the first polarity.
Abstract:
An article and method of forming the article is disclosed. The article includes a heat source, a heat-sink, and a thermal interface element having a plurality of freestanding nanosprings, a top layer, and a bottom layer. The nanosprings, top layer, and the bottom layers of the article include at least one inorganic material. The article can be prepared using a number of methods including the methods such as GLAD and electrochemical deposition.
Abstract:
Self-calibration of a multiple channel clearance sensor system, which in one embodiment includes at least one sensor for measuring at least one clearance parameter signal between a stationary object and a rotating object of a rotating machine. The sensor output is processed as a clearance parameter by an offset correction section configured to determine an offset error in the clearance parameter signal which is used by a level shifter. The level shifter is also switchably coupled to the clearance parameter signal wherein the output of the level shifter, which may be amplified and digitally converted, is processed by a signal level analyzer to determine a channel gain signal.
Abstract:
A method for assembling a Fabry-Perot interferometer includes depositing a first metal layer on an end portion of a ferrule, depositing a second metal layer on a back portion of a die, placing the first metal layer and the second metal layer in contact with each other with respective first and second orifices aligned with respect to each other, and bonding the ferrule to the die by thermo compression. The resulting interferometer includes a glass die with a cavity, a silicon diaphragm disposed over the opening of the cavity and bonded to the glass die, a ferrule bonded to the glass die by thermo compression with the first and second orifices being aligned to each other, and an optical fiber inserted through the other end of the ferrule in direct contact to a back portion of the die and aligned with the first orifice.
Abstract:
A high-temperature pressure sensor that includes a dielectric layer. The pressure sensor also includes a substrate capable of withstanding temperatures greater than 450° C. without entering a phase change, at least one semiconducting material deposited on the sapphire substrate, and a silicon dioxide layer deposited over the semiconducting material. One aspect of the pressure sensor includes a second semiconducting material.
Abstract:
An encapsulated device comprises a solid state device, a first encapsulating material and a second encapsulating material having a higher thermal conductivity than the first encapsulating material. The solid state device may be an LED. The first encapsulating material located above the LED may be transparent to LED light or radiation, while the second encapsulating material located below the LED may have a high thermal conductivity to decrease the LED operating temperature.