摘要:
The invention relates to a method for determining a performance of a photolithographic mask at an exposure wavelength with the steps of scanning at least one electron beam across at least one portion of the photolithographic mask, measuring signals generated by the at least one electron beam interacting with the at least one portion of the photolithographic mask, and determining the performance of the at least one portion of the photolithographic mask at the exposure wavelength based on the measured signals.
摘要:
A method for measuring the relative local position error of one of the sections of an object that is exposed section by section, in particular of a lithography mask or of a wafer, is provided, each exposed section having a plurality of measurement marks, wherein a) a region of the object which is larger than the one section is imaged in magnified fashion and is detected as an image, b) position errors of the measurement marks contained in the detected image are determined on the basis of the detected image, c) corrected position errors are derived by position error components which are caused by the magnified imaging and detection being extracted from the determined position errors of the measurement marks, d) the relative local position error of the one section is derived on the basis of the corrected position errors of the measurement marks.
摘要:
A method for correcting errors on a wafer processed by a photolithographic mask at a wafer processing site is provided. The method comprises measuring errors on the wafer, and modifying a pattern placement on the photolithographic mask by locally applying femtosecond light pulses of a laser system to the photolithographic mask at the wafer processing site.
摘要:
An embodiment of a method of dividing past computing instances into predictable and unpredictable sets begins with a first step of a computing entity storing a training data set comprising past computing instances. Each past computing instance comprises attributes and a past computing value. In a second step, the computing entity separates the training data set into a predictable set of past computing instances and an unpredictable set of past computing instances. According to an embodiment, a method of predicting a computing value begins with the first and second steps. The method of predicting the computing value continues with a third step of the computing entity forming a predictor from the predictable set of past computing instances. In a fourth step, the computing entity applies the predictor to a pending computing instance that meets a predictability test to determine a predicted value for the pending computing instance.
摘要:
Provided is a method for determining a recovery schedule. The method includes accepting as input a recovery graph. The recovery graph presents one or more strategies for data recovery. In addition, at least one objective is provided and accepted. The recovery graph is formalized as an optimization problem for the provided objective. When formalized as an optimization problem, at least one solution technique is applied to determine at least one recovery schedule.
摘要:
A method for generating a demand estimate for a product includes gathering a set of auction data which is relevant to the product, removing from the auction data all but a highest bid from each unique bidder in the auction data, and correcting a bias in the auction data caused by a set of characteristics of an auction from which the auction data is obtained. In one embodiment, the auction data is obtained from an on-line auction which is characterized by bidders not necessarily knowing the start time of the auction.
摘要:
A process for controlling the proximity effect correction in an electron beam lithography system. The exposure is controlled in order to obtain resulting pattern after processing which is conform to design data. In a first step an arbitrary set patterns is exposed without applying the process for controlling the proximity correction. The geometry of the resulting test structures is measured and a set of measurement data is obtained. Within a numerical range basic input parameters for the parameters α, β and η, are derived from the set of measurement data. A model is fitted by individually changing at least the basic input parameters α, β and η of a control function to measurement data set and thereby obtaining an optimised set of parameters. The correction function is applied to an exposure control of the electron beam lithography system during the exposure of a pattern according to the design data.
摘要:
The invention concerns a method for exposing a substrate (1) equipped with an n-layer photoresist system (2), an electrically conductive connection being created between a ground potential and the substrate (1) and/or at least one of the layers S1 through Sn of the photoresist system (2). The invention furthermore concerns an arrangement for carrying out said method. According to the present invention, what is achieved in a single process step is that by way of spring elements E1 through E4, a contact tip K1 is advanced as far as the layer S1, a contact tip K2 is advanced through the layer S1 as far as the layer S2, a contact tip K3 is advanced through the layer S1 and S2 as far as the layer S3, and so forth. The electrical charges from the layer S1 are dissipated to the ground potential via the contact tip K1, the charges from the layer S2 via the contact tip K2, etc., and/or and from the substrate (1) via a contact tip K4.
摘要:
The invention relates to a method for correcting at least one error on wafers processed by at least one photolithographic mask, the method comprises: (a) measuring the at least one error on a wafer at a wafer processing site, and (b) modifying the at least one photolithographic mask by introducing at least one arrangement of local persistent modifications in the at least one photolithographic mask.
摘要:
A method and system of workforce related resource planning is disclosed. The method includes receiving workforce related resource data wherein the workforce related resource data includes demand data and supply data, disaggregating the demand data and the supply data and creating a probability distribution of a workforce gap between the demand data and supply data to quantify risk associated with workforce related resource planning.