Abstract:
A semiconductor memory device may include a substrate having a plurality of active regions wherein each active region has a length in a direction of a first axis and a width in a direction of a second axis. The length may be greater than the width, and the plurality of active regions may be provided in a plurality of columns of active regions in the direction of the second axis. A plurality of wordline pairs may be provided on the substrate, with each wordline pair crossing active regions of a respective column of active regions defining a drain portion of each active region between wordlines of the respective wordline pair. A plurality of bitlines on the substrate may cross the plurality of wordline pairs, with each bitline being electrically coupled to a respective drain portion of an active region of each column, and with each bitline being arranged between the respective drain portion and another drain portion of an adjacent active region of the same column.
Abstract:
In a method of forming fine patterns, a photocurable coating layer is formed on a substrate. A first surface of a template makes contact with the photocurable coating layer. The first surface of the template includes at least two first patterns having a first dispersion degree of sizes, and at least one portion of the first surface of the template includes a photo attenuation member. A light is irradiated onto the photocurable coating layer through the template to form a cured coating layer including second patterns having a second dispersion degree of sizes. The second patterns are generated from the first patterns and the second dispersion degree is less than the first dispersion degree. The template is separate from the cured coating layer. A size dispersion degree of the patterns used in a nanoimprint lithography process may be adjusted by the light attenuation member, so that the fine patterns may be formed to have an improved size dispersion degree.
Abstract:
A semiconductor memory device includes a plurality of rows, each row comprising a plurality of active regions arranged at a pitch wherein the active regions in adjacent rows are shifted with respect to each other by one half of the pitch, wherein a distance between each active region in a row is equal to a distance between active regions in adjacent rows.
Abstract:
A wafer, having alignment marks formed thereon, is aligned by radiating a first light beam onto the alignment marks so as to generate a first diffracted light beam. The first diffracted light beam is sensed at a first position. A second light beam is radiated onto the alignment marks so as to generate a second diffracted light beam. The second diffracted light beam is sensed at a second position. A correction value is calculated based on a first difference between the first position and a first predetermined position and a second difference is calculated based on a second difference between the second position and a second predetermined position. The wafer is aligned based on the correction value.
Abstract:
There are provided a method of forming a trench for a recessed channel of a transistor and a layout for the same. A layout for the recessed channel according to one aspect of the present invention is formed such that an open region is extended across at least one of a first active region in a lateral direction, and also across another second active region in parallel with the first active region in a diagonal direction, and the extension is cut not to reach an isolation region between two third active regions that are in parallel with the second active region in a diagonal direction, and have noses facing each other in a longitudinal direction, and the layout includes an alignment of a plurality of open regions, which are discontinuously aligned. An etch mask is formed using the layout, and a semiconductor substrate is etched using the etch mask, and a trench for a recessed channel is formed on the active region.
Abstract:
A semiconductor memory device comprises a plurality of rows, each row comprising a plurality of active regions arranged at a pitch wherein the active regions in adjacent rows are shifted with respect to each other by one half of the pitch, wherein a distance between each active region in a row is equal to a distance between active regions in adjacent rows.
Abstract:
Methods and apparatus for varying the number and intensity of beams of a photo-lithographic light source for exposing photoresist materials include beam dividers and beam focusing means. Methods include producing an incident light beam having uniform intensity distribution, refracting the incident light beam into a plurality of divergent beams, refracting the plurality of divergent beams into a plurality of parallel beams, and exposing an object with light of the plurality of parallel beams. Apparatus includes source of light beam having uniform intensity distribution, first refracting element for refracting the light beam into a plurality of divergent beams, second refracting element for refracting the plurality of divergent beams into a plurality of parallel beams, and means for exposing the object with light of the plurality of parallel beams. Variations in the separations of the refractive elements allows for the control of the size, shape, and dispersion patterns of resultant beams.
Abstract:
Nanoimprint lithography templates and methods of fabricating semiconductor devices using the nanoimprint lithography templates are provided. The nanoimprint lithography template includes a transparent substrate having a first refractive index, a stamp pattern on a surface on the transparent substrate and having inclined sidewalls, and a coating layer formed on the inclined sidewalls of the stamp pattern, the coating layer having a second refractive index higher than the first refractive index.
Abstract:
A semiconductor memory device may include a substrate having a plurality of active regions wherein each active region has a length in a direction of a first axis and a width in a direction of a second axis. The length may be greater than the width, and the plurality of active regions may be provided in a plurality of columns of active regions in the direction of the second axis. A plurality of wordline pairs may be provided on the substrate, with each wordline pair crossing active regions of a respective column of active regions defining a drain portion of each active region between wordlines of the respective wordline pair. A plurality of bitlines on the substrate may cross the plurality of wordline pairs, with each bitline being electrically coupled to a respective drain portion of an active region of each column, and with each bitline being arranged between the respective drain portion and another drain portion of an adjacent active region of the same column.
Abstract:
In a method of forming fine patterns, a photocurable coating layer is formed on a substrate. A first surface of a template makes contact with the photocurable coating layer. The first surface of the template includes at least two first patterns having a first dispersion degree of sizes, and at least one portion of the first surface of the template includes a photo attenuation member. A light is irradiated onto the photocurable coating layer through the template to form a cured coating layer including second patterns having a second dispersion degree of sizes. The second patterns are generated from the first patterns and the second dispersion degree is less than the first dispersion degree. The template is separate from the cured coating layer. A size dispersion degree of the patterns used in a nanoimprint lithography process may be adjusted by the light attenuation member, so that the fine patterns may be formed to have an improved size dispersion degree.