摘要:
An anti-corrosion coating to protect against corrosion, comprising: a high-density protective coating on a substrate which is prone to corrosion, preferably metals and/or alloys thereof, containing pre-condensed coat-forming alkoxysilane precursors, wherein the molecules of the pre-condensed coat-forming alkoxysilane precursors are built up from monomer units selected from the group formed by coat-forming alkoxysilane precursors, wherein the molecules of the pre-condensed coat-forming alkoxysilane precursors are cross-linked with each other, wherein the high-density protective coating has a coating thickness of at least 50 μm. The high-density protective coating formed by an inorganic-organic hybrid material, which is preferably produced without solvents (i.e. without the addition of solvents, in particular organic solvents), is comprised of at least one coat-forming alkoxysilane precursor, in particular selected from the group formed by trialkoxysilane precursors.
摘要:
An anti-corrosion coating to protect against corrosion, comprising: a high-density protective coating on a substrate which is prone to corrosion, preferably metals and/or alloys thereof, containing pre-condensed coat-forming alkoxysilane precursors, wherein the molecules of the pre-condensed coat-forming alkoxysilane precursors are built up from monomer units selected from the group formed by coat-forming alkoxysilane precursors, wherein the molecules of the pre-condensed coat-forming alkoxysilane precursors are cross-linked with each other, wherein the high-density protective coating has a coating thickness of at least 50 μm. The high-density protective coating formed by an inorganic-organic hybrid material, which is preferably produced without solvents (i.e. without the addition of solvents, in particular organic solvents), is comprised of at least one coat-forming alkoxysilane precursor, in particular selected from the group formed by trialkoxysilane precursors.
摘要:
A process for producing a coated lightweight metal substrate, in particular, an aluminium substrate, by a wet-chemical application of a coating composition to the lightweight metal substrate and thermally curing the coating composition is provided. A coating material composition is also described that is formed from a sol-gel material.
摘要:
A process for producing a coated lightweight metal substrate, in particular, an aluminium substrate, by a wet-chemical application of a coating composition to the lightweight metal substrate and thermally curing the coating composition is provided. A coating material composition is also described that is formed from a sol-gel material.
摘要:
The invention relates to the use of a coating of a layer including an inorganic, glass-like matrix of an alkali silicate and/or alkaline earth silicate or a layer including an inorganic-organic hybrid matrix or of a double layer of a base layer including an inorganic, glass-like matrix of an alkali silicate and/or alkaline earth silicate or a base layer including an inorganic-organic hybrid matrix and an alkali silicate-free and alkaline earth silicate-free top layer including a matrix of an oxidated silicon compound as the anti-limescale coating on at least one metal surface or inorganic surface of an object or material. The anti-limescale coating can be used for storage or transport devices for water or media containing water. The anti-limescale coating is suitable for pipelines, sand control systems or safety valves in the conveyance of oil or gas or the storage of oil or gas.
摘要:
The invention relates to a method of stabilizing the bonding agent gelation time in the consolidation of a geological formation in the presence of one or more catalytically active substances, in which method a bonding agent is infiltrated into the formation, a portion of the infiltrated bonding agent is optionally expelled by flushing with a gas or a liquid, and the bonding agent remaining in the formation is cured. The bonding agent comprises a mixture of A) a heterocondensate, obtainable by hydrolysis and condensation of at least one hydrolyzable silicon compound and at least one metal, phosphorus or boron compound, the metal being selected from Al, Ge, Sn, Pb, Ti, Mg, Li, V, Nb, Ta, Zr and Hf, B) at least one organic polymerizable monomer or oligomer comprising a C—C double bond, and C) at least one thermal polymerization initiator without peroxide function.
摘要:
Materials from the group consisting ofa) one or more hybrid materials containing an organic polymer from the group of the polyamides, polyimides and epoxy resins and an inorganic oligo- or polymer from the group of the oligo- and polysiloxanes and heterocondensates of Si with Ti, Zr and/or Al, wherein the organic and the inorganic component are covalently bound to one another, in combination with one or more inorganic sols based on silyl alkoxylates and/or titanium alkoxylates, wherein hybrid material and inorganic sol are crosslinked, b) one or more hybrid materials containing an organic polymer from the group of the polyamides, polyimides and epoxy resins and an inorganic oligo- or polymer from the group of the oligo- and polysiloxanes and heterocondensates of Si with Ti, Zr and/or Al, wherein the organic and the inorganic component are covalently bound to one another, c) one or more inorganic sols based on silyl alkoxylates and/or titanium alkoxylates and d) one or more polyamides, polyimides and/or epoxy resins mixed with oxidic and/or non-oxidic metal and/or metalloid particles, preferably from the group of the oxides, nitrides, carbides and mixtures thereof, are suitable as adhesive for the bonding of metals, plastics, concrete and/or ceramics.
摘要:
The invention relates to the use of a coating of a layer including an inorganic, glass-like matrix of an alkali silicate and/or alkaline earth silicate or a layer including an inorganic-organic hybrid matrix or of a double layer of a base layer including an inorganic, glass-like matrix of an alkali silicate and/or alkaline earth silicate or a base layer including an inorganic-organic hybrid matrix and an alkali silicate-free and alkaline earth silicate-free top layer including a matrix of an oxidated silicon compound as the anti-limescale coating on at least one metal surface or inorganic surface of an object or material. The anti-limescale coating can be used for storage or transport devices for water or media containing water. The anti-limescale coating is suitable for pipelines, sand control systems or safety valves in the conveyance of oil or gas or the storage of oil or gas.
摘要:
Materials from the group consisting of a) one or more hybrid materials containing an organic polymer from the group of the polyamides, polyimides and epoxy resins and an inorganic oligo- or polymer from the group of the oligo- and polysiloxanes and heterocondensates of Si with Ti, Zr and/or Al, wherein the organic and the inorganic component are covalently bound to one another, in combination with one or more inorganic sols based on silyl alkoxylates and/or titanium alkoxylates, wherein hybrid material and inorganic sol are crosslinked, b) one or more hybrid materials containing an organic polymer from the group of the polyamides, polyimides and epoxy resins and an inorganic oligo- or polymer from the group of the oligo- and polysiloxanes and heterocondensates of Si with Ti, Zr and/or Al, wherein the organic and the inorganic component are covalently bound to one another, c) one or more inorganic sols based on silyl alkoxylates and/or titanium alkoxylates and d) one or more polyamides, polyimides and/or epoxy resins mixed with oxidic and/or non-oxidic metal and/or metalloid particles, preferably from the group of the oxides, nitrides, carbides and mixtures thereof, are suitable as adhesive for the bonding of metals, plastics, concrete and/or ceramics.
摘要:
A method for producing a glass-like protective layer on an optionally pre-coated metal or glass substrate. The method comprises: (a) mixing one or more defined silicon compounds with NaOH and KOH, (b) adding water to the mixture obtained in (a) to hydrolyze the silicon compound(s), (c) adding at least one defined compound of formula MYm, where M is Pb, Ti, Zr, Al or B, to the hydrolyzed mixture obtained in (b), wherein the molar ratio M/Si is from 0.01/1 to 0.04/1, to obtain a coating sol, (d) applying the coating sol obtained in (c) to the substrate, and (e) thermal densification of the coating sol applied in d) at a temperature of from 300° C. to 500° C. to form the glass-like protective layer.