Abstract:
Devices and methods are disclosed for containing and processing samples on the surface of supports. Biopolymer features are attached to the surfaces of the supports. A device in accordance with the invention comprises a housing and a support confined by the housing. The housing comprises a well having walls and at least one wall extending from the edge of the well. The height of the walls of the well is at least great enough, and the design of the at least one wall is such, that liquid contained in the well is not drawn out of the well to any substantial degree by surface tension or small movements or small mechanical vibrations. In one embodiment, the at least one wall is designed such that corners thereof are curved or are distant from the edge of the well to substantially eliminate wicking of liquid from the well. Also disclosed are methods for mixing materials on the surface of a support. A sample is incubated with the surface of the support of the aforementioned device. The sample is removed from the surface, a residual amount of the sample remaining on the surface. The surface is contacted with a wash solution. A stream of gas is directed at the surface of the support. The pressure of the stream and the angle of the stream create a vortex on the surface sufficient to mix the sample and the wash solution. The wash solution is then removed from the surface. Also disclosed are methods for conducting binding reactions using the devices of the invention.
Abstract:
An athermal package for fiber photonic devices includes a ferrule to attach the optical fiber to the package. The ferrule has an opening to receive the optical fiber. The ferule is collapsed to attach the optical fiber to the athermal package. Alternatively, the athermal package uses adhesive bonds disposed in pockets of the package. The pockets have a narrow end and a wide end, with the narrow ends facing each other. The adhesive bonds are disposed in the pockets in contact the narrow ends of the pockets but not with the wide ends. The narrow ends physically confine the adhesive bonds so that if the bonds expand or contract due to environmental conditions (or the curing process), the adhesive either expands or contracts near the wide ends of the pockets. This allows the strain on the optical fiber segment between the bonds to remain substantially constant.
Abstract:
A method and apparatus for forming and reading a radiation image of an object is provided. The method is performed by placing an object of which a radiation image is to be taken adjacent a platform that is positioned between a storage layer radiation screen and an electromagnetic wave radiation source such that radiation from the electromagnetic wave radiation source which traverses the object is absorbed by the storage layer radiation screen; forming a latent radiation image of the object on the storage layer radiation screen by causing the electromagnetic wave radiation source to emit radiation, a portion of the emitted radiation traversing the object and being absorbed by the storage layer radiation screen; and reading the latent radiation image of the object from the storage layer radiation screen.
Abstract:
A method and apparatus for forming and reading a radiation image of an object is provided. The method is performed by placing an object of which a radiation image is to be taken adjacent a platform that is positioned between a storage layer radiation screen and an electromagnetic wave radiation source such that radiation from the electromagnetic wave radiation source which traverses the object is absorbed by the storage layer radiation screen; forming a latent radiation image of the object on the storage layer radiation screen by causing the electromagnetic wave radiation source to emit radiation, a portion of the emitted radiation traversing the object and being absorbed by the storage layer radiation screen; and reading the latent radiation image of the object from the storage layer radiation screen.
Abstract:
A system is provided for scanning an object, the system comprising: a drive shaft having a proximal portion and a longitudinal axis; a motor including a motor shaft having a rotational axis, the motor serving to rotate the motor shaft about the rotational axis; a flexible joint coupling the drive shaft to the motor shaft by the proximal portion of the drive shaft, the flexible joint having a range of motion which allows the longitudinal axis of the drive shaft to move relative to the rotational axis of the motor shaft; and an object attached to the drive shaft which is movable along the longitudinal axis of the drive shaft in response to the drive shaft being rotated by the motor. This system may be used in a drum scanner system and may be used to read storage layer radiation screens.
Abstract:
The present invention provides novel methods and devices that employ microfluidic technology to generate molecular melt curves. In particular, the devices and methods in accordance with the invention are useful in providing for the analysis of PCR amplification products.
Abstract:
An athermal package for fiber photonic devices includes at least two bonding regions at each end of the optical fiber containing the photonic device. At each end of the optical fiber, the bonding region nearest the photonic device (i.e., the inner bonding region) has a width that is less than that of the other bonding region (i.e., the outer bonding region). The smaller widths of the inner bonding regions allow for relatively precise control of the positions on the optical fiber that the inner bonding regions are attached. The larger widths of the outer bonding regions help provide reliable attachments.
Abstract:
The present invention provides novel methods and devices that employ microfluidic technology to generate molecular melt curves. In particular, the devices and methods in accordance with the invention are useful in providing for the analysis of PCR amplification products.
Abstract:
A laser desorption ionization instrument for and method of measuring the molecular weight of large organic molecules includes a time of flight mass spectrometer (TOF MS). The TOF MS instrument provides optimized optic design for both DC and TLF modes. The invention further provides dynamic resolution enhancement for a given ejection pulse, along with optimized ion ejection pulses relative to the ion optic elements. The invention also provides means for compensating for difference in total kinetic energy among ions of different mass; high resolution detection means for improved sensitivity for large molecular weight species. The invention further provides x-y-z stage for sample presentation of both standard MALDI and gel or membrane based samples.
Abstract:
The present invention provides novel methods and devices that employ microfluidic technology to generate molecular melt curves. In particular, the devices and methods in accordance with the invention are useful in providing for the analysis of PCR amplification products.