摘要:
A low speed pre-ignition detection, mitigation, and driver notification system and method utilize a controller to analyze a knock signal from a knock sensor to detect LSPI knock of the engine and in response to detecting the LSPI knock, enrich a fuel/air ratio of the engine and limit a torque output of the engine to a level that is less than a maximum torque output of the engine, and when enriching the fuel/air ratio of the engine and limiting the torque output of the engine does not mitigate the LSPI knock, output at least one message for a driver of the vehicle instructing the driver to take remedial action to mitigate the LSPI knock.
摘要:
Turbocharged engine water vapor ingestion control techniques determine a dew point of a charge air cooler (CAC) in an induction system of the engine based on measured humidity and temperature of a mixture of (i) air drawn into the induction system and (ii) exhaust gas produced by the engine that is cooled and recirculated by a low pressure cooled exhaust gas recirculation (LPCEGR) system of the engine back into the induction system. When the mixture temperature is less than the CAC dew point, a condensate accumulation in the CAC is determined. When the CAC condensate accumulation does not satisfy a set of one or more thresholds, the mixture temperature is increased. When the CAC condensate accumulation satisfies the set of one or more thresholds, an amount of the exhaust gas that is cooled and recirculated by the LPCEGR system is decreased until the mixture temperature meets the CAC dew point.
摘要:
An engine bank-to-bank airflow balancing technique includes calculating current and offset volumetric efficiencies of the engine and calculating a slope representing (i) a difference between the offset and current volumetric efficiencies and (ii) a difference between offset and current intake camshaft positions. Based on the respective exhaust gas oxygen concentrations, the technique involves calculating a volumetric efficiency correction corresponding to each cylinder bank and based on the slope and the volumetric efficiency corrections, calculating target intake camshaft position shifts. The technique further involves controlling offsets of the intake camshafts based on the target intake camshaft position shifts. After a predetermined number of target intake camshaft position shifts are determined and stored with respect to various combinations of engine speed and a ratio of intake manifold pressure to barometric pressure, final intake camshaft position shifts may be determined and utilized when determining the intake camshaft positions.
摘要:
A vehicle jump detection method and system for a vehicle includes an electronic control module (ECM), at least one ride height sensor (RHS) in signal communication with the ECM and configured to measure a vertical wheel travel distance from a predetermined point on the vehicle, at least one accelerometer in signal communication with the ECM and configured to measure a vertical acceleration of the vehicle frame, and a vehicle speed sensor in signal communication with the ECM. The ECM is configured to independently determine, based on one or more signals from the at least one RHS, the at least one accelerometer, and the vehicle speed sensor, if (i) wheels of a front axle are in the air, (ii) wheels of a rear axle are in the air, and (iii) if the wheels of both the front and rear axles are in the air.
摘要:
A control system and method for an engine including a turbocharger without a surge valve involve utilizing one or more pressure sensors configured to measure air pressure in an intake system of the engine, the intake system comprising a compressor of the turbocharger and a throttle valve downstream from the compressor, and a controller configured to control the engine to avoid surge at the compressor and eliminate a need for the surge valve by determining a desired position for the throttle valve based on a driver requested engine torque, determining a minimum mass flow through the compressor that avoids surge based on the measured air pressure in the intake system and a predetermined compressor map, and commanding the throttle valve to a target position to maintain at least the minimum compressor mass flow, wherein the target position is greater than the desired position, thereby avoiding surge at the compressor.
摘要:
Techniques for setting a boost target for a turbocharged engine comprise (i) operating the engine in a scavenging mode such that opening of intake and exhaust valves of cylinders of the engine overlap and (ii) while transitioning the engine in/out of the scavenging mode: determining an engine torque request, creating a torque reserve by setting independent targets for throttle inlet pressure (TIP) and intake manifold absolute pressure (MAP), determining a target TIP based on a target total air charge, engine speed, and a previously-determined target engine volumetric efficiency (VE), controlling a wastegate valve based on the target TIP, determining a target MAP based on the engine torque request, and controlling a throttle valve based on the target MAP. During steady-state scavenging operation, the controller calculates a conventional target TIP based on the engine torque request and controls the wastegate valve based on the conventionally calculated target TIP.
摘要:
Techniques for learning endstop position(s) of an actuator for a wastegate valve include detecting a learn condition and, in response to detecting the learn condition, performing a learn procedure for the actuator endstop position(s). The learn procedure includes commanding the actuator to a desired position past the endstop position corresponding to a fully-closed wastegate valve while rate-limiting a velocity of the actuator. When the difference reaches its maximum allowed value and the velocity falls below a fraction of its rate limit, the endstop position is learned. When the wastegate valve is requested open, the actuator is then controlled using the learned endstop position. Reference stiffness for a fully-closed wastegate valve could be obtained, and subsequent stiffness checks could then be periodically performed and, if less than the reference stiffness, a duty cycle of the actuator could be increased during open-loop control.
摘要:
An engine bank-to-bank airflow balancing technique includes calculating current and offset volumetric efficiencies of the engine and calculating a slope representing (i) a difference between the offset and current volumetric efficiencies and (ii) a difference between offset and current intake camshaft positions. Based on the respective exhaust gas oxygen concentrations, the technique involves calculating a volumetric efficiency correction corresponding to each cylinder bank and based on the slope and the volumetric efficiency corrections, calculating target intake camshaft position shifts. The technique further involves controlling offsets of the intake camshafts based on the target intake camshaft position shifts. After a predetermined number of target intake camshaft position shifts are determined and stored with respect to various combinations of engine speed and a ratio of intake manifold pressure to barometric pressure, final intake camshaft position shifts may be determined and utilized when determining the intake camshaft positions.
摘要:
A system for a vehicle includes a mode control module and a valve control module. The mode control module selectively sets an ignition mode for an engine to one of a spark ignition (SI) mode and a homogenous charge compression ignition (HCCI) mode. In response to the ignition mode transitioning from the SI mode to the HCCI mode during a first engine cycle, the valve control module operates an exhaust valve in a high lift mode during a second engine cycle, operates an intake valve in a low lift mode during the second engine cycle, and operates the exhaust and intake valves in the low lift mode during a third engine cycle. The first engine cycle is before the second engine cycle, and the second engine cycle is before the third engine cycle.
摘要:
A low speed pre-ignition detection, mitigation, and driver notification system and method utilize a controller to analyze a knock signal from a knock sensor to detect LSPI knock of the engine and in response to detecting the LSPI knock, enrich a fuel/air ratio of the engine and limit a torque output of the engine to a level that is less than a maximum torque output of the engine, and when enriching the fuel/air ratio of the engine and limiting the torque output of the engine does not mitigate the LSPI knock, output at least one message for a driver of the vehicle instructing the driver to take remedial action to mitigate the LSPI knock.