Abstract:
Flame retardant adhesives and tape articles include a nonhalogenated flame retardant composition comprising a combination of melamine phosphate and melamine cyanurate.
Abstract:
A method of bonding a first article to a second article is provided. The method involves the use of a flowable, adhesive composition that contains non-aggregated, surface-modified silica nanoparticles dispersed in an epoxy resin.
Abstract:
A flame-resistant electrical circuit covercoat composition includes a phosphinate and a urethane solder mask. The composition can be used as a covercoat for flexible circuits.
Abstract:
This disclosure relates to flame retardants that are useful for epoxy resin systems. Coating compositions and methods are provided the include an epoxy resin and a phosphate-containing flame retardant wherein the phosphate-containing flame retardant is selected from Group 1 metallic salts of a phosphate of a saccharide, Group 2 salts of a glycerophosphate, and Group 1 metallic salts of a polyphosphate. The provided flame retardants have low toxicity and are friendly to the environment.
Abstract:
Pressure sensitive adhesives having flame retarding properties include a (meth)acrylate-based block copolymer, and at least 10% by weight of a halogen-free flame retarding agent. The adhesives may contain additional optional additives such as tackifying resins, plasticizers, and the like. The adhesives are prepared by blending the (meth)acrylate-based block copolymer, and the halogen-free flame retarding agent either in solvent or by a solventless process.
Abstract:
The present invention provides a flame retardant encapsulant composition. A composition includes 40-80 wt. % of an encapsulant comprising 60 to 80 parts by weight of hydrocarbon oil suspended in a cross-linked polymer matrix; and a liquid flame retardant. At least a portion of the liquid flame retardant can be present in the form of a dispersed liquid phase suspended in a continuous oil-rich phase that swells the cross-linked polymer matrix. In some exemplary embodiments, the oil-rich phase comprises less than 15% of the liquid flame retardant dissolved in the oil-rich phase.
Abstract:
This disclosure relates to flame retardants that are useful for epoxy resin systems. Coating compositions and methods are provided the include an epoxy resin and a phosphate-containing flame retardant wherein the phosphate-containing flame retardant is selected from Group 1 metallic salts of a phosphate of a saccharide, Group 2 salts of a glycerophosphate, and Group 1 metallic salts of a polyphosphate. The provided flame retardants have low toxicity and are friendly to the environment.
Abstract:
A phosphorus-containing silsesquioxane is represented by the formula [R13SiO1/2]m[R2SiO3/2]n[R3SiO3/2]p[(R4O)2PO(CH2)xSiO3/2]q wherein each of R1, R2, R3, and R4 independently represents a hydrocarbyl group; x represents an integer of from 1 to 8; m is a positive number less than 1.5; n and q are positive numbers greater than 0 and less than 1; and p is a number greater than or equal to 0 and less than 1. Further, (n+p)/q is in a range of from 0.5 to 99, and (n+p+q)=1. Curable and cured compositions comprising the phosphorus-containing silsesquioxane are disclosed.
Abstract translation:含磷的倍半硅氧烷由式[R13SiO1 / 2] m [R2SiO3 / 2] n [R3SiO3 / 2] p [(R4O)2PO(CH2)xSiO3 / 2] q表示,其中R1,R2,R3, 并且R 4独立地表示烃基; x表示1〜8的整数, m是小于1.5的正数; n和q是大于0且小于1的正数; 并且p是大于或等于0且小于1的数字。此外,(n + p)/ q在0.5至99的范围内,并且(n + p + q)= 1。 公开了包含含磷倍半硅氧烷的可固化和固化的组合物。
Abstract:
Pressure sensitive adhesive tapes having flame retarding properties include a backing and a pressure sensitive adhesive layer. The pressure sensitive adhesive layer includes a (meth)acrylate-based block copolymer, and may also include at least 10% by weight of a halogen-free flame retarding agent. The adhesive layer may contain additional optional additives such as tackifying resins, plasticizers, and the like. The tapes are prepared by coating the flame retarding pressure sensitive adhesive onto the backing, either in solvent or by a solventless process.
Abstract:
A composition includes in relative proportion: 60 to 94 parts by weight of mineral oil; 1 to 30 parts by weight of at least one thermoplastic elastomer; and 5 to 30 parts by weight of non-halogenated metal phosphinate, wherein the non-halogenated metal phosphinate has a decomposition temperature of at least 240° C., and wherein the composition is a gel. A method of making the composition and its use as an encapsulant are also disclosed.