摘要:
An embodiment includes a process of forming a gate stack that acts to resist the redeposition to the semiconductive substrate of mobilized metal such as from a metal gate electrode. An embodiment also relates to a system that achieves the process. An embodiment also relates to a gate stack structure that provides a composition that resists the redeposition of metal during processing and field use.
摘要:
An embodiment includes a process of forming a gate stack that acts to resist the redeposition to the semiconductive substrate of mobilized metal such as from a metal gate electrode. An embodiment also relates to a system that achieves the process. An embodiment also relates to a gate stack structure that provides a composition that resists the redeposition of metal during processing and field use.
摘要:
A capacitor-less memory cell, memory device, system and process of forming the capacitor-less memory cell includes forming the memory cell in an active area of a substantially physically isolated portion of the bulk semiconductor substrate. A pass transistor is formed on the active area for coupling with a word line. The capacitor-less memory cell further includes a read/write enable transistor vertically configured along at least one vertical side of the active area and operable during a reading of a logic state with the logic state being stored as charge in a floating body area of the active area, causing different determinable threshold voltages for the pass transistor.
摘要:
A semiconductor magnetic memory device has a magnetic tunneling junction formed over a memory cell. The memory cell has a control gate surrounded by a floating gate. The floating gate is coupled to the magnetic tunneling junction through a pinning layer that maintains the magnetic orientation of the lower magnetic layer of the junction. A current through a selected word line, coupled to the control gate, generates a first magnetic field. A current through a cell select line generates a second magnetic field that is orthogonal to the first magnetic field. This changes the magnetic orientation of the upper magnetic layer of the junction to lower its resistance, thus allowing a write/erase voltage on a program/erase line to program/erase the floating gate.
摘要:
A capacitor-less memory cell, memory device, system and process of forming the capacitor-less memory cell includes forming the memory cell in an active area of a substantially physically isolated portion of the bulk semiconductor substrate. A pass transistor is formed on the active area for coupling with a word line. The capacitor-less memory cell further includes a read/write enable transistor vertically configured along at least one vertical side of the active area and operable during a reading of a logic state with the logic state being stored as charge in a floating body area of the active area, causing different determinable threshold voltages for the pass transistor.
摘要:
A semiconductor magnetic memory device has a magnetic tunneling junction formed over a memory cell. The memory cell has a control gate surrounded by a floating gate. The floating gate is coupled to the magnetic tunneling junction through a pinning layer that maintains the magnetic orientation of the lower magnetic layer of the junction. A current through a selected word line, coupled to the control gate, generates a first magnetic field. A current through a cell select line generates a second magnetic field that is orthogonal to the first magnetic field. This changes the magnetic orientation of the upper magnetic layer of the junction to lower its resistance, thus allowing a write/erase voltage on a program/erase line to program/erase the floating gate.
摘要:
The present invention relates to a method for forming an isolation trench structure in a semiconductor substrate without causing deleterious topographical depressions in the upper surface thereof which cause current and charge leakage to an adjacent active area. The inventive method forms a pad oxide upon a semiconductor substrate, and then forms a nitride layer on the pad oxide. The nitride layer is patterned with a mask and etched to expose a portion of the pad oxide layer and to protect an active area in the semiconductor substrate that remains covered with the nitride layer. A second dielectric layer is formed substantially conformably over the pad oxide layer and the remaining portions of the first dielectric layer. A spacer etch is then carried out to form a spacer from the second dielectric layer. The spacer is in contact with the remaining portion of the first dielectric layer. An isolation trench etch follows the spacer etch. An optional thermal oxidation of the surfaces in the isolation trench may be performed, which may optionally be followed by doping of the bottom of the isolation trench to further isolate neighboring active regions on either side of the isolation trench. A conformal layer is formed substantially conformably over the spacer, over the remaining portions of the first dielectric layer, and substantially filling the isolation trench. Planarization of the conformal layer follows, either by CMP or by etchback or by a combination thereof. An isolation trench filled with a structure results. The resulting structure has a flange and shaft, the cross-section of which has a nail shape in cross-section.
摘要:
Semiconductor structures and methods of making a vertical diode structure are provided. The vertical diode structure may have associated therewith a diode opening extending through an insulation layer and contacting an active region on a silicon wafer. A titanium silicide layer may be formed over the interior surface of the diode opening and contacting the active region. The diode opening may initially be filled with an amorphous silicon plug that is doped during deposition and subsequently recrystallized to form large grain polysilicon. The silicon plug has a top portion that may be heavily doped with a first type dopant and a bottom portion that may be lightly doped with a second type dopant. The top portion may be bounded by the bottom portion so as not to contact the titanium silicide layer. In one embodiment of the vertical diode structure, a programmable resistor contacts the top portion of the silicon plug and a metal line contacts the programmable resistor.
摘要:
The invention includes methods of forming and/or passivating semiconductor constructions. In particular aspects, various oxides of a semiconductor substrate can be formed by exposing semiconductive material of the substrate to deuterium-enriched steam. In other aspects, a semiconductor construction is passivated by subjecting the construction to an anneal at a temperature of greater than or equal to 350° C. while exposing the construction to a deuterium-enriched ambient.
摘要:
The invention includes a method of forming an array of memory cells. A series of capacitor constructions is formed, with the individual capacitor constructions having storage nodes. The capacitor constructions are defined to include a first set of capacitor constructions and a second set of capacitor constructions. A series of electrically conductive transistor gates are formed over the capacitor constructions and in electrical connection with the capacitor constructions. The transistor gates are defined to include a first set that is in electrical connection with the storage nodes of the first set of capacitor constructions, and a second set that is in electrical connection with the storage nodes of the second set of capacitor constructions. A first conductive line is formed over the transistor gates and in electrical connection with the first set of transistor gates, and a second conductive line is formed over the first conductive line and in electrical connection with the second set of transistor gates. The invention also includes an array of memory cells.