Abstract:
A storage apparatus stores output property data including groups of residual capacities of a secondary battery and output densities corresponding to the residual capacities. In the output property data, both a difference between a residual capacity of a group that includes an extreme value in the output densities and a residual capacity of a group that includes an output density that immediately precedes the extreme value, and a difference between the residual capacity of the group that includes the extreme value in the output densities and a residual capacity of a group that includes an output density that immediately follows the extreme value are less than a difference between output densities of other groups adjacent to each other.
Abstract:
A storage apparatus stores output property data including groups of residual capacities of a secondary battery and output densities corresponding to the residual capacities. In the output property data, both a difference between a residual capacity of a group that includes an extreme value in the output densities and a residual capacity of a group that includes an output density that immediately precedes the extreme value, and a difference between the residual capacity of the group that includes the extreme value in the output densities and a residual capacity of a group that includes an output density that immediately follows the extreme value are less than a difference between output densities of other groups adjacent to each other.
Abstract:
An operation mode control device for controlling an operation mode of a movable body including a battery having a residual capacity-output property including a local minimum value and a local maximum value on a side of a lower residual capacity than the local minimum value, a motor operable by electric power supplied by the battery, and an engine, wherein the operation mode control device is configured to control to switch between a first mode, in which only power of the motor operates, and a second mode, in which both the power of the motor and power of the engine operate, wherein the operation mode is controlled to have an operation range, in which the second mode is performed when an output is on the side of lower residual capacity than the local minimum value.
Abstract:
Provided are a positive electrode active material, a lithium ion electric storage device using the same, and a manufacturing method thereof. The positive electrode active material contains (1) lithium nickel cobalt manganese oxide, and at least one type of a lithium ion acceptance capacity adjustment compound selected from (2a) lithium vanadium composite oxide, vanadium oxide, lithium vanadium phosphate, and lithium vanadium fluorophosphate and (2b) Nb2O5, TiO2, Li3/4Ti5/3O4, WO2, MoO2, and Fe2O3. The lithium ion electric storage device contains this positive electrode active material.
Abstract:
A positive electrode sheet including a positive electrode mixture layer formed on one surface is provided at one of the outermost layers of an electrode sheet group, while a positive electrode sheet including a positive electrode mixture layer formed at one surface is provided at the other outermost layer of the electrode sheet group. A negative electrode sheet including negative electrode mixture layers formed on both surfaces is provided between the positive electrode sheets. A lithium electrode sheet including metal lithium foils formed on both surfaces is overlapped onto the electrode sheet group formed by stacking the three sheets. When a wound-type electric storage device is produced, the electrode sheet group is wound together with the lithium electrode sheet.
Abstract:
A disclosed film electrode includes an electrode base, and an active material layer formed on the electrode base, and a resin layer adhering to at least one of a peripheral portion of the active material layer and a surface of the active material layer in a direction extending along a plane of the electrode base.
Abstract:
An electrode is capable of achieving both the safety of a corresponding electrochemical device and at least one of the output or the capacity retention rate. The electrode contains an electrode composite material layer, an insulating layer, and an electrode substrate. The electrode composite material layer and the insulating layer are sequentially formed on the electrode substrate, and the electrode composite material layer is coated by the insulating layer. An average value of the coverage percentage of the electrode composite material layer by the insulating layer in the electrode is 90% or more.
Abstract:
A composite material includes vanadium lithium phosphate, and a conductive carbon. an amount of the conductive carbon is 2.5 mass % or more and 7.5 mass % or less.
Abstract:
A liquid composition that contains a polymerizable compound and a solvent, and that can form a porous resin. The liquid composition, when stirred, transmits at least 30 percent of incident light having a wavelength of 550 nm. The haze value of an containing the liquid composition increases by 1.0 percent or more when the element containing the liquid composition is cured.
Abstract:
Non-aqueous electrolyte storage element including; positive electrode including positive electrode material layer, which contains positive electrode active material capable of reversibly accumulating and releasing anions; negative electrode including negative electrode material layer, which contains negative electrode active material capable of reversibly accumulating and releasing cations; separator disposed between the positive electrode and the negative electrode; and non-aqueous electrolyte containing electrolyte salt, the non-aqueous electrolyte storage element satisfying formulae: 0.5≦[(V1+V2+V3)/V4]≦0.61; and 0.14≦P1/P2≦0.84, where V1 is volume of pores of the positive electrode material layer per unit area of the positive electrode, V2 is volume of pores of the negative electrode material layer per unit area of the negative electrode, V3 is volume of pores per unit area of the separator, and V4 is total volume of the non-aqueous electrolyte storage element, and P1 is porosity of the positive electrode material layer, and P2 is porosity of the separator.