Abstract:
A semiconductor device includes: a first semiconductor layer of a first conductivity type; an insulation layer on the first semiconductor layer; a second semiconductor layer in the insulation layer; an active element in the second semiconductor layer; a first semiconductor region on the first semiconductor layer and of a second conductivity type; a second semiconductor region in the first semiconductor region and of the second conductivity type with a higher impurity concentration than the first semiconductor region; a first conductor in a through hole in the insulation layer and connected to the second semiconductor region; a second conductor above or within the insulation layer, the second conductor surrounding the first conductor such that an outside edge thereof is outside the second semiconductor region; a third conductor connecting the first and second conductors; and a fourth conductor connected to the first semiconductor layer.
Abstract:
There is provided a semiconductor device and a method for manufacturing a semiconductor device. Within the N-type semiconductor layer formed from a high resistance N-type substrate, the P-type well diffusion layer and P-type extraction layer are formed and are fixed to ground potential. Due thereto, a depletion layer spreading on the P-type well diffusion layer side does not reach the interlayer boundary between the P-type well diffusion layer and the buried oxide film. Hence, the potential around the surface of the P-type well diffusion layer is kept at a ground potential. Accordingly, when the voltages are applied to the backside of the N-type semiconductor layer and a cathode electrode, a channel region at the MOS-type semiconductor formed as a P-type semiconductor layer is not activated. Due thereto, leakage current that may occur independently of a control due to the gate electrode of a transistor can be suppressed.
Abstract:
There is provided a semiconductor device and a method for manufacturing a semiconductor device. Within the N-type semiconductor layer formed from a high resistance N-type substrate, the P-type well diffusion layer and P-type extraction layer are formed and are fixed to ground potential. Due thereto, a depletion layer spreading on the P-type well diffusion layer side does not reach the interlayer boundary between the P-type well diffusion layer and the buried oxide film. Hence, the potential around the surface of the P-type well diffusion layer is kept at a ground potential. Accordingly, when the voltages are applied to the backside of the N-type semiconductor layer and a cathode electrode, a channel region at the MOS-type semiconductor formed as a P-type semiconductor layer is not activated. Due thereto, leakage current that may occur independently of a control due to the gate electrode of a transistor can be suppressed.
Abstract:
A semiconductor device has a LOCOS film formed on at least one of a drain side and a source side of a semiconductor substrate surface. A gate oxide film connected to the LOCOS film is formed on the semiconductor substrate surface. A conductive film is formed to cover the gate oxide film and the LOCOS film. A gate electrode is formed by etching the conductive film such that an end portion of the conductive film is positioned above the LOCOS film. The LOCOS film is etched such that an end portion of the LOCOS film is in alignment with an end portion of the gate electrode, thereby forming a recessed portion in a part of the semiconductor substrate surface from which the LOCOS film has been removed. A side wall spacer is formed to cover a side surface of the gate electrode such that a bottom surface of the side wall spacer contacts a surface of the recessed portion. A drain region and a source region are formed by doping a impurity to the semiconductor substrate surface on either side of the gate electrode and the side wall spacer.
Abstract:
A semiconductor device includes: a first semiconductor layer of a first conductivity type; an insulation layer on the first semiconductor layer; a second semiconductor layer in the insulation layer; an active element in the second semiconductor layer; a first semiconductor region on the first semiconductor layer and of a second conductivity type; a second semiconductor region in the first semiconductor region and of the second conductivity type with a higher impurity concentration than the first semiconductor region; a first conductor in a through hole in the insulation layer and connected to the second semiconductor region; a second conductor above or within the insulation layer, the second conductor surrounding the first conductor such that an outside edge thereof is outside the second semiconductor region; a third conductor connecting the first and second conductors; and a fourth conductor connected to the first semiconductor layer.