Abstract:
A hot-water supply system heats water through heat exchange between high-temperature refrigerant of a heat pump circuit and water of a water circulating circuit. The system is an instantaneous water heater unit for instantaneously heating, at a water heat exchanger, water supplied through a water supply pipe and supplying hot water to a using end unit. Therefore, a large-capacity hot-water storage tank is not needed. Sufficient heat of condensation to heat water can not be produced, because pressure conditions of the heat pump circuit is not stabilized just after the start of operation. Therefore, during a short period of rising time, hot water stored in a hot-water supply tank and water from the water heat exchanger are mixed and the mixture is supplied to keep the hot water at a preset temperature. Therefore, it is possible to use a smaller hot-water supply tank.
Abstract:
A hot-water supply system heats water through heat exchange between high-temperature refrigerant of a heat pump circuit and water of a water circulating circuit. The system is an instantaneous water heater unit for instantaneously heating, at a water heat exchanger, water supplied through a water supply pipe and supplying hot water to a using end unit. Therefore, a large-capacity hot-water storage tank is not needed. Sufficient heat of condensation to heat water can not be produced, because pressure conditions of the heat pump circuit is not stabilized just after the start of operation. Therefore, during a short period of rising time, hot water stored in a hot-water supply tank and water from the water heat exchanger are mixed and the mixture is supplied to keep the hot water at a preset temperature. Therefore, it is possible to use a smaller hot-water supply tank.
Abstract:
A method for indicating a running condition of a vehicle having an engine and a manual transmission generates a direction of a down-shift operation according to a detected opening angle of a throttle valve of the engine and detected acceleration and deceleration of the vehicle. The direction of the down-shift operation is generated when the acceleration of the vehicle is above a predetermined value while the throttle valve is substantially fully closed and when the deceleration of the vehicle is above a predetermined value while the throttle valve is substantially fully opened. Thus, a suitable direction of gear position is generated when the vehicle is climbing an uphill road or coasting on a downhill road.
Abstract:
A fin-and-tube type heat exchanger is disclosed in which the height of each raised, slotted louver from a fin base portion continuously changes in a direction crossing at right angles both the direction of the air flow and the direction of lamination of fins, and two or three kinds of such louver pairs, each consisting of louvers symmetric with each other with respect to the fin base portion, are arranged regularly.
Abstract:
The auxiliary combustion chamber of a four-cycle stratified-charge piston engine is divided into a primary cavity and a secondary cavity both formed in an insert liner received in the cylinder head. The primary cavity receives a relatively rich mixture which passes into the secondary cavity, and the main combustion chamber receives a relatively lean mixture. A spark plug communicates with the primary cavity. A long torch passage connects the primary cavity with the central portion of the main combustion chamber, and one or more short torch passages connect the secondary cavity with a peripheral portion of the main combustion chamber. The purpose is to reduce emission of NO.sub.x without adversely affecting emissions of CO and HC, and to improve fuel economy.
Abstract:
Disclosed is an air conditioner and, in particular, an air conditioner which is capable of blowing out warm air in heating mode. In the air conditioner of this invention, the condenser is thermally separated into an air-upstream-side and an air-downstream-side heat exchanger, and the heat exchange capacity of the air-downstream-side heat exchanger is adjusted, so that, under preset operating conditions, the entire refrigerant in the air-downstream-side heat exchanger can be kept in the superheated-gas phase, thus making it possible to blow out warm air having a temperature higher than the condensation temperature. Further, the refrigerant temperature at the outlet of the air-downstream-side heat exchanger is measured by a temperature sensor, and the revolving speed of the compressor, the revolving speed of the fan, etc., is so controlled that the temperature measured is kept at a level higher than the condensation temperature. Thus, under all operating conditions, the entire refrigerant in the air-downstream-side heat exchanger can be kept in the superheated gas phase, thereby making it possible to blow out warm air having a temperature higher than the condensation temperature.
Abstract:
Controlled amounts of relatively rich mixture and relatively lean mixture are supplied separately to a combustion chamber of an internal combustion engine. The position of the intake valves, exhaust valve and spark plug are such that the rich mixture tends to remain near the spark plug during the compression stroke of the engine and does not disperse throughout the lean mixture. At the time of ignition enriched mixture near the spark plug ignites readily and the flame propagates into and through the lean mixture which fills the remainder of the combustion chamber. Several constructions are disclosed to achieve the desired mixture ratios for various operating conditions of the engine.
Abstract:
A high power output internal combustion piston engine is provided with two intake ports and one exhaust port for each combustion chamber. Flow through each port is controlled by a valve, the exhaust valve being positioned on one side of the combustion chamber and the two intake valves on the other side. A spark plug communicates with the combustion chamber on the same side as the exhaust valve, and near one of the intake valves. An air-fuel mixture is supplied to each of the intake ports through first and second throttle valves. Means including a lost-motion connection coordinates the movements of the throttle valves.
Abstract:
Overheating of a catalytic converter receiving exhaust gases from an internal combustion engine is minimized by providing an air-fuel mixture leaner than the stoichiometric ratio for combustion in the engine, maintaining the exhaust gases in an exhaust reaction chamber at relatively high temperature for a relatively long time period before conveying them to the catalytic converter, sensing deceleration conditions in the engine as a function of increase in intake vacuum intensity, and retarding the spark ignition timing and introducing supplemental air for combustion upon increase in vacuum intensity.
Abstract:
A hot-water supply system heats water through heat exchange between high-temperature refrigerant of a heat pump circuit and water of a water circulating circuit. The system is an instantaneous water heater unit for instantaneously heating, at a water heat exchanger, water supplied through a water supply pipe and supplying hot water to a using end unit. Therefore, a large-capacity hot-water storage tank is not needed. Sufficient heat of condensation to heat water can not be produced, because pressure conditions of the heat pump circuit is not stabilized just after the start of operation. Therefore, during a short period of rising time, hot water stored in a hot-water supply tank and water from the water heat exchanger are mixed and the mixture is supplied to keep the hot water at a preset temperature. Therefore, it is possible to use a smaller hot-water supply tank.