Abstract:
An imaging device module includes an imaging device including a light incident plane on which light is incident, and a reverse face disposed on an opposite side of the light incident plane; and a thermal conductive sheet provided on the reverse face for dissipating heat generated from the imaging device.The thermal conductive sheet contains a plate-like boron nitride particle, and the thermal conductive sheet has a thermal conductivity in a direction perpendicular to the thickness direction of 4 W/m·K or more.
Abstract:
A thermal conductive sheet containing a plate-like boron nitride particle, wherein the thermal conductivity in a direction perpendicular to the thickness direction of the thermal conductive sheet is 4 W/m·K or more, and a glass transition point determined as the peak value of tanδ obtained by measuring a dynamic viscoelasticity of the thermal conductive sheet at a frequency of 10 Hz is 125° C. or more.
Abstract:
A thermal conductive sheet contains a plate-like boron nitride particle, wherein the thermal conductivity in a direction perpendicular to the thickness direction of the thermal conductive sheet is 4 W/m·K or more. The breakdown voltage of the thermal conductive sheet as measured in conformity with JIS C 2110 (2010) is 10 kV/mm or more.
Abstract translation:导热片包含板状氮化硼颗粒,其中与导热片的厚度方向垂直的方向的导热率为4W / m·K以上。 根据JIS C 2110(2010)测量的导热片的击穿电压为10kV / mm以上。
Abstract:
A first resin, a curable precursor of a second resin that differs from the first resin, an inorganic material and a solvent are blended and a mixed solution is prepared. Next, by heating the mixed solution, the solvent is removed and the curable precursor is cured, and an organic-inorganic composite is obtained that comprises a composite resin having a co-continuous phase-separated structure formed from a three-dimensionally continuous first phase made of the first resin and a three-dimensionally continuous second phase made of the second resin, and an inorganic material that is localized at the interface between the first phase and the second phase.
Abstract:
An imaging device module includes an imaging device including a light incident plane on which light is incident, and a reverse face disposed on an opposite side of the light incident plane; and a thermal conductive sheet provided on the reverse face for dissipating heat generated from the imaging device.The thermal conductive sheet contains a plate-like boron nitride particle, and the thermal conductive sheet has a thermal conductivity in a direction perpendicular to the thickness direction of 4 W/m·K or more.
Abstract:
A thermal conductive sheet includes a plate-like boron nitride particle. The thermal conductive sheet has a thermal conductivity in a direction perpendicular to the thickness direction of the thermal conductive sheet of 4 W/m·K or more, and the 5% weight loss temperature of 250° C. or more. The thermal conductive sheet has a water absorption of 3 vol % or less.
Abstract:
A heat dissipation structure includes a substrate, an electronic component mounted on the substrate, a heat dissipation member for dissipating heat generated from the electronic component, and a thermal conductive adhesive sheet provided on the substrate so as to cover the electronic component. The thermal conductive adhesive sheet includes a thermal conductive layer containing a plate-like boron nitride particle. The thermal conductive layer has a thermal conductivity in a direction perpendicular to the thickness direction of the thermal conductive layer of 4 W/m·K or more, and the thermal conductive adhesive sheet is in contact with the heat dissipation member.
Abstract:
A power module includes a power module board including an insulating layer and a conductive circuit formed on the insulating layer, a power device provided on the power module board and electrically connected to the conductive circuit, and a thermal conductive sheet for dissipating the heat generated from the power module board and/or the power device. The thermal conductive sheet contains a plate-like boron nitride particle and the thermal conductivity in a direction perpendicular to the thickness direction of the thermal conductive sheet is 4 W/m·K or more.
Abstract:
A light-emitting diode device includes a light-emitting diode, a power circuit portion for supplying electric power to the light-emitting diode, and a heat dissipating member for dissipating the heat generated from the light-emitting diode. The heat dissipating member is made of a thermal conductive sheet which contains a plate-like boron nitride particle. The thermal conductivity in a direction perpendicular to the thickness direction of the thermal conductive sheet is 4 W/m·K or more.
Abstract:
A thermal conductive sheet contains a plate-like boron nitride particle. The proportion of the boron nitride particle content is 35 vol % or more, and the thermal conductivity in a direction perpendicular to the thickness direction of the thermal conductive sheet is 4 W/m·K or more.