Abstract:
A file or other data unit may be scanned for malicious code by calculating a hash value of a portion of the file or data unit and transmitting the hash value of the portion over a computer network to a remotely located server computer. In the server computer, the hash value of the portion may be compared to hash values of malicious codes. The server computer may send the result of the comparison over the computer network to the client computer. The client computer may send one or more additional hash values of other portions of the file or data unit when the result indicates that the hash value of the portion matches a hash value of malicious code. Otherwise, the client computer may deem the file or data unit to be free of malicious code.
Abstract:
A semiconductor package includes a first semiconductor chip, a second semiconductor chip, a first substrate, a second substrate and a metal cap. The chips are electrically connected to the first substrate, the second substrate is disposed between the chips, and the chips and the second substrate are disposed within the metal cap.
Abstract:
Embodiments of the present invention relate to an improved die layout for a bi-directional and reverse blocking battery switch. According to one embodiment, two switches are oriented side-by-side, rather than end-to-end, in a die package. This configuration reduces the total switch resistance for a given die area, often reducing the resistance enough to avoid the use of backmetal in order to meet resistance specifications. Elimination of backmetal reduces the overall cost of the die package and removes the potential failure modes associated with the manufacture of backmetal. Embodiments of the present invention may also allow for more pin connections and an increased pin pitch. This results in redundant connections for higher current connections, thereby reducing electrical and thermal resistance and minimizing the costs of manufacture or implementation of the die package.
Abstract:
Embodiments of the present invention relate to an improved package for a bi-directional and reverse blocking battery switch. According to one embodiment, two switches are oriented side-by-side, rather than end-to-end, in a die package. This configuration reduces the total switch resistance for a given die area, often reducing the resistance enough to avoid the use of backmetal in order to meet resistance specifications. Elimination of backmetal reduces the overall cost of the die package and removes the potential failure modes associated with the manufacture of backmetal. Embodiments of the present invention may also allow for more pin connections and an increased pin pitch. This results in redundant connections for higher current connections, thereby reducing electrical and thermal resistance and minimizing the costs of manufacture or implementation of the die package.
Abstract:
A semiconductor package includes a first semiconductor chip, a second semiconductor chip, a first substrate, a second substrate and a metal cap. The chips are electrically connected to the first substrate, the second substrate is disposed between the chips, and the chips and the second substrate are disposed within the metal cap.
Abstract:
Embodiments of the present invention relate to an improved package for a bi-directional and reverse blocking battery switch. According to one embodiment, two switches are oriented side-by-side, rather than end-to-end, in a die package. This configuration reduces the total switch resistance for a given die area, often reducing the resistance enough to avoid the use of backmetal in order to meet resistance specifications. Elimination of backmetal reduces the overall cost of the die package and removes the potential failure modes associated with the manufacture of backmetal. Embodiments of the present invention may also allow for more pin connections and an increased pin pitch. This results in redundant connections for higher current connections, thereby reducing electrical and thermal resistance and minimizing the costs of manufacture or implementation of the die package.
Abstract:
A planar light source having a first substrate, a plurality of electrode modules, a second substrate, a dielectric spacer, a first phosphor layer, and a discharge gas is provided. The electrode modules are disposed on the first substrate. The second substrate is disposed above the first substrate. The dielectric spacer covers the electrode modules and is connected between the first substrate and the second substrate. The space between the first substrate and the second substrate is divided into a plurality of discharge spaces by the dielectric spacer. The first phosphor layer is disposed in the discharge spaces. The discharge gas is disposed in the discharge spaces. The coating area of the phosphor layer can be increased and cracks in the substrate can be prevented due to the simple structure of the planar light source.
Abstract:
Embodiments of the present invention relate to an improved die layout for a bi-directional and reverse blocking battery switch. According to one embodiment, two switches are oriented side-by-side, rather than end-to-end, in a die package. This configuration reduces the total switch resistance for a given die area, often reducing the resistance enough to avoid the use of backmetal in order to meet resistance specifications. Elimination of backmetal reduces the overall cost of the die package and removes the potential failure modes associated with the manufacture of backmetal. Embodiments of the present invention may also allow for more pin connections and an increased pin pitch. This results in redundant connections for higher current connections, thereby reducing electrical and thermal resistance and minimizing the costs of manufacture or implementation of the die package.
Abstract:
In an epoxy resin composition comprising an epoxy resin, a curing agent, and at least 70% by weight of an inorganic filler, at least one of the epoxy resin and the curing agent has such a molecular weight distribution as to provide an average dispersity Mw/Mn of less than 1.6, a two-nucleus compound content of less than 8% by weight and a seven- and more-nucleus compound content of less than 32% by weight. When the composition is cured at 180.degree. C. for 90 seconds into a primary product having Tg1 and the primary product postcured at 180.degree. C. for 5 hours into a secondary product having Tg2, the relationship: (Tg2-Tg1)/Tg2