摘要:
A photoacoustic catheter includes an elongated catheter body and a housing positioned near a distal end of the elongated catheter body. A length of multimode fiber extends through the elongated catheter body and has a distal end that is beveled at about 45° relative to a longitudinal axis of the multimode fiber and is positioned in the housing. An ultrasonic transducer, electrically connected to an electrical wire extending along the elongated catheter body, is positioned within the housing. A mirror element is also positioned within the housing and includes a mirror surface beveled at about 45° relative to the longitudinal axis of the multimode fiber. The catheter is operable to deliver an optical wave through the multimode fiber and to deliver an ultrasonic wave collinearly from the housing and out of an aperture of the housing to obtain optical data and ultrasonic data within a mammalian luminal organ.
摘要:
The invention relates to a method for diagnosing a disease state mediated by pathogenic cells, said method comprising the steps of administering to a patient a composition comprising a conjugate or complex of the general formula Ab-X wherein the group Ab comprises a ligand that binds to the pathogenic cells and the group X comprises an imaging agent, and detecting the pathogenic cells that express a receptor for the ligand using mutiphoton in vivo flow cytometry.
摘要:
A method of noninvasively imaging tissue within a body includes irradiating the tissue using an imaging laser including a Raman-based laser tuner, the radiation including a plurality of laser pulses, each having energy greater than 100 mJ; receiving an acoustic signal generated by vibrational energy in the tissue, wherein the vibrational energy is a result of selective overtone excitation of molecules in the tissue by the radiation; and automatically converting the acoustic signal to an image representative of the tissue using a processor. An imaging system includes an imaging laser configured to irradiate tissue with a plurality of laser pulses using a Raman-based laser tuner. An ultrasonic transducer receives an acoustic signal generated by vibrational energy in the tissue due to overtone excitation by the radiation. A processor is configured to automatically produce an image representative of the tissue using the received acoustic signal.
摘要:
The present disclosure describes hydrophobically modified nanoparticles and polymeric nanostructures that can be utilized to for the treatment of neuronal injury or neuronal disease in an affected patient, along with methods of forming and using the nanoparticles and nanostructures. Furthermore, the nanoparticles and nanostructures are designed as “dual action” compositions to treat neuronal injury and neuronal disease via repair of damaged membrane and suppression of intracellular inflammation.
摘要:
Systems and methods are disclosed for detecting a coherent anti-Stokes Raman scattering (CARS) signal from a microscopic sample in an epi-direction. In an embodiment, the system includes at least two sources having a pump source for generating a pump field at the pump frequency, a Stoke source for generating a Stoke field at the Stoke frequency that is different from the pump frequency, optics (64) for directing the pump and Stoke beams (60) in a collinear fashion through a focusing lens (66) toward a common focal spot in a sample (70), and detector optics that images the CARS in epi-direction, which is generated by the interaction of the pump and Stoke fields (60) with the sample (70) and is collected by the same focusing lens (66), towards an epi-detector (78).
摘要:
An imaging system, including a radiation source configured to output a signal that can non-invasively and selectively cause overtone excitation of molecules based on a predetermined chemical bond, and an ultrasound detector configured to non-invasively detect an acoustic signal generated by vibrational energy caused by the selective overtone excitation of the molecules and further configured to convert the acoustic signal into an image.
摘要:
The invention relates to a method for diagnosing a disease state mediated by pathogenic cells, said method comprising the steps of administering to a patient a composition comprising a conjugate or complex of the general formula Ab-X wherein the group Ab comprises a ligand that binds to the pathogenic cells and the group X comprises an imaging agent, and detecting the pathogenic cells that express a receptor for the ligand using mutiphoton in vivo flow cytometry.
摘要:
A microsecond-scale stimulated Raman spectroscopic imaging system having a light source, such as a laser output that provides two femtosecond laser beams and a modulator to modulate the laser intensity at frequency between about 1 and about 100 megahertz. The system can further include a medium that chirps the two femtosecond beams to generate a spectral focus in a specimen, and a galvo mirror or resonant mirror pair to scan the two femtosecond beams in two dimension on the specimen. An objective lens can focus the two laser beams into a specimen or sample and a resonant delay scanner configured to produce an optical delay to the pair of chirped beams in said specimen and a tuned amplifier or lock-in amplifier can be used to extract the stimulated Raman-signal shift at the aforementioned modulation frequency.
摘要:
A method for providing images using a multimodal nonlinear optical microscope is disclosed. The method includes providing a foundation femtosecond laser beam, generating a first femtosecond laser beam and a second femtosecond laser beam corresponding to the foundation femtosecond laser beam, combining the first femtosecond laser beam and the foundation femtosecond laser beam to generate a first combination femtosecond laser beam, and generating a coherent anti-Stokes Raman scattering (CARS) signal based on the first combination femtosecond laser beam. A multimodal nonlinear optical microscopy platform is also disclosed.
摘要:
A method for providing images using a multimodal nonlinear optical microscope is disclosed. The method includes providing a foundation femtosecond laser beam, generating a first femtosecond laser beam and a second femtosecond laser beam corresponding to the foundation femtosecond laser beam, combining the first femtosecond laser beam and the foundation femtosecond laser beam to generate a first combination femtosecond laser beam, and generating a coherent anti-Stokes Raman scattering (CARS) signal based on the first combination femtosecond laser beam. A multimodal nonlinear optical microscopy platform is also disclosed.