Abstract:
Methods and apparatus are provided related to fluid dispensing heads. A dispense head is formed to define a plurality of fluid jetting nozzles and a surface pattern. The surface pattern is characterized by one or more voids extending inward from an outer surface of the dispense head. Fluid puddle formation during operation of the dispense head is limited in volume by way of the surface pattern. Fluid puddle limiting reduces or eliminates dispensing errors to an entity, undesirable artifacts from resulting on a printed media, or similar problems.
Abstract:
Disclosed is a print cartridge for an inkjet printer includes a flexible circuit having a nozzle member formed therein, the nozzle member including a plurality of ink orifices and the flexible circuit having window openings therein. The window openings expose electrical leads on the flexible circuit. A substrate containing a plurality of heating elements and associated ink ejection chambers, and having electrodes to which the electrical leads are bonded, is mounted on the back surface of the nozzle member. Each heating element is located proximate to an associated ink orifice. The back surface of the nozzle member extending over two or more outer edges of the substrate. A print cartridge body having a headland portion located proximate to the back surface of the nozzle member and including an inner raised wall circumscribing the substrate. The inner raised wall having an adhesive support surface formed thereon and having wall openings therein. The wall openings having an adhesive support surface. An adhesive layer is located between the back surface of the nozzle member and the inner raised wall and wall openings therein to affix the nozzle member to the headland and form an adhesive ink seal. The adhesive layer is located on the adhesive support surface of the inner raised wall and along the adhesive support surface within the wall openings therein and within the window openings so as to encapsulate the electrical leads bonded to the substrate electrodes.
Abstract:
A printing method that includes supplying ink from an ink reservoir through an ink channel that connects the ink reservoir with ink ejection chambers formed on a first surface of a substrate. The ink channel is connected at a first end to the ink reservoir and at a second end to a separate inlet passage for refilling each of the ink ejection chambers with ink. A group of the ink ejection chambers in adjacent relationship forms one of a plurality of primitives on the first surface of the substrate in which only a maximum of one of the ink ejection chambers is energized at a time. An ejection element within one of the ink ejection chambers is energized to cause the plurality of ink drops to be ejected onto a media surface at a single pixel location in a single pass of the substrate over the media surface.
Abstract:
A fluid ejection device includes a firing chamber having an ejection orifice opposite a chamber floor, a heating element and a mesa projecting from the chamber floor, the mesa is spaced from the heating element to define a passive zone between the mesa and heating element.
Abstract:
Systems, including apparatus and methods, for microfluidic processing and/or analysis of samples. The systems include a microfluidic device having a substrate and a thin-film layer formed on the substrate. The thin-film layer may be included in electronics formed on the substrate. The electronics may provide electronic devices configured to sense or modify a property of the sample. The thin-film layer defines an opening for routing movement of fluid and/or sample within the device.
Abstract:
The present invention includes as one embodiment an inkjet printing method for decreasing dot placement artifacts of an inkjet printhead having at least two substrates, each with overlapping and non-overlapping nozzle rows, the method including selectively disabling at least one ink ejection element associated with at least one nozzle in the overlapping nozzle rows based on a swath height error of the substrate.
Abstract:
An inkjet printhead assembly includes a substrate having an ink feed slot formed therein including a first side and second side along a vertical length of the ink feed slot. A first column of drop generators is formed along the first side of the ink feed slot. A second column of drop generators is formed along the second side of the ink feed slot. Each drop generator includes a nozzle. A nozzle packing density for nozzles in the first and second columns of drop generators including the area of the ink feed slot is at least approximately 100 nozzles per square millimeter (mm2).
Abstract:
An inkjet print cartridge that includes a substrate having a plurality of ink ejection chambers with an ink ejection element in each of the ink ejection chambers, an ink channel connecting at one end to an inlet passage connected to one of the ink ejection chambers for refilling the one of the ink ejection chambers with ink, a group of the ink ejection chambers in adjacent relationship forming a primitive in which a maximum of only one of the ink ejection chambers in the primitive is activated at a time, first circuit on the substrate coupled to the ink ejection elements in the ink ejection chambers, wherein the first circuit applying primitive select signals to select one or more of the primitives and applying address line select signals to enable devices associated with the ink ejection elements in one or more selected primitives such that a maximum of one of the ink ejection chambers in each of the selected primitive is energized at a time causing a plurality of ink drops to be ejected from the one of the ink ejection chambers onto a media surface at a single pixel location in a single pass of the print cartridge.
Abstract:
A wide-array inkjet printhead assembly includes a carrier and a plurality of printhead dies mounted on the carrier. The carrier includes a plurality of conductive layers, a plurality of conductive vias, and a plurality of insulative layers. The conductive layers include a first interface layer disposed on a first face of the carrier, a second interface layer disposed on a second face of the carrier, and at least one power layer, data layer, and ground layer each interposed between the first and second interface layers. Each conductive via provides a conductive path through at least one of the insulative layers to provide electrical coupling between selected ones of the conductive layers, and each of the printhead dies are electrically coupled to the first interface layer.
Abstract:
Disclosed is an inkjet printhead including a substrate having a plurality of individual ink ejection elements formed on a first surface of said substrate, said ink ejection elements electrically connected to bond pads on said substrate, a barrier layer formed on said first surface of said substrate, said barrier layer defining a plurality of individual ink ejection chambers, said barrier layer further providing isolation of the bond pads on the substrate and a flexible circuit having electrical traces formed thereon, said electrical traces having leads attached to said bond pads; said flexible circuit overlaying and affixed to said barrier layer such that a plurality of nozzles formed in a nozzle member portion of said flexible circuit, such that said nozzles align with said ink ejection chambers and said ink ejection elements.