Abstract:
In one implementation, an apparatus includes a semiconductor die, a lead, a non-conductive epoxy, and a conductive epoxy. The semiconductor die includes an upper surface and a lower surface opposite the upper surface. The lead is electrically coupled to the upper surface of the semiconductor die. The non-conductive epoxy is disposed on a first portion of the lower surface of the semiconductor die. The conductive epoxy is disposed on a second portion of the lower surface of the semiconductor die. In some implementations, a conductive wire extends from the lead to the upper surface of the semiconductor die to electrically couple the lead to the upper surface of the semiconductor die.
Abstract:
An electronic device can include a packaging material having a first surface and a second surface opposite the first surface, and leads including die connection surfaces and external connection surfaces. The electronic device can further include a trench extending from an upper surface of the packaging substrate towards a lower surface of the packaging substrate, wherein a set of leads lie immediately adjacent to the trench, and the packaging material is exposed at the bottom of the trench. In an embodiment, an encapsulant is formed over the upper surface of the packaging substrate and within the trench. In a particular embodiment, the trenches may be formed before or after placing a die over the packaging substrate, or before or after forming electrical connections between the die and leads of the packaging substrate.
Abstract:
An electronic device can include a packaging material having a first surface and a second surface opposite the first surface, and leads including die connection surfaces and external connection surfaces. The electronic device can further include a trench extending from an upper surface of the packaging substrate towards a lower surface of the packaging substrate, wherein a set of leads lie immediately adjacent to the trench, and the packaging material is exposed at the bottom of the trench. In an embodiment, an encapsulant is formed over the upper surface of the packaging substrate and within the trench. In a particular embodiment, the trenches may be formed before or after placing a die over the packaging substrate, or before or after forming electrical connections between the die and leads of the packaging substrate.
Abstract:
In one embodiment, a semiconductor package includes a conductive slug and columnar leads in spaced relationship thereto. The columnar leads are coupled to an electronic device attached to the slug, and are exposed at least on one side of the package opposite the die attach slug. The die attach slug is further exposed to provide a package configured in a slug up orientation.
Abstract:
A process for the estimation of volatile substances which comprises the steps of: (i) heating distilled water in a flask to a first temperature, (ii) adding the sample to be tested into said heated water, (iii) closing the flask, (iv) maintaining the flask containing the sample at a second temperature lower than said first temperature, (v) purging with air, (vi) drawing the volatile vapours and subjecting it to analysis.
Abstract:
An electronic device can include a packaging material having a first surface and a second surface opposite the first surface, and leads including die connection surfaces and external connection surfaces. The electronic device can further include a trench extending from an upper surface of the packaging substrate towards a lower surface of the packaging substrate, wherein a set of leads lie immediately adjacent to the trench, and the packaging material is exposed at the bottom of the trench. In an embodiment, an encapsulant is formed over the upper surface of the packaging substrate and within the trench. In a particular embodiment, the trenches may be formed before or after placing a die over the packaging substrate, or before or after forming electrical connections between the die and leads of the packaging substrate.
Abstract:
A method for manufacturing a semiconductor component that includes a leadframe having a non-metallic base structure and an intermediate leadframe structure. The non-metallic base structure may be, among other things, paper, cellulose, or plastic. A layer of electrically conductive material is formed over the non-metallic base structure. A circuit element attach structure and a plurality of leadframe leads are formed from the layer of electrically conductive material. A circuit element is coupled to the circuit element attach structure and electrically coupled to the plurality of leadframe leads. The circuit element is encapsulated and at least the non-metallic base structure is removed. Alternatively, a plurality of leadframe leads may be formed on the electrically conductive layer and a circuit element is placed over the electrically conductive layer. The circuit element is electrically coupled to the plurality of leadframe leads and encapsulated. The non-metallic base structure and the electrically conductive layer are removed.
Abstract:
Post harvest treatment of bananas with gibberellins A.sub.4 /A.sub.7 optionally mixed with a fungicide, in amounts sufficient to delay ripening.
Abstract:
An electronic device can include a packaging material having a first surface and a second surface opposite the first surface, and leads including die connection surfaces and external connection surfaces. The electronic device can further include a trench extending from an upper surface of the packaging substrate towards a lower surface of the packaging substrate, wherein a set of leads lie immediately adjacent to the trench, and the packaging material is exposed at the bottom of the trench. In an embodiment, an encapsulant is formed over the upper surface of the packaging substrate and within the trench. In a particular embodiment, the trenches may be formed before or after placing a die over the packaging substrate, or before or after forming electrical connections between the die and leads of the packaging substrate.
Abstract:
In one embodiment, a semiconductor package includes a conductive slug and columnar leads in spaced relationship thereto. The columnar leads are coupled to an electronic device attached to the slug, and are exposed at least on one side of the package opposite the die attach slug. The die attach slug is further exposed to provide a package configured in a slug up orientation.