Abstract:
A mounting board including a pair of patterned electrodes, a lower surface and an upper surface opposed thereto on which a substrate of an electronic component is to be mounted, a pass-through hole penetrating through the upper surface and the lower surface, and a peripheral side surface that defines the pass-through hole. The pass-through hole includes a plurality of penetrating grooves that are cut into the mounting board and penetrate through the upper and lower surfaces. The plurality of penetrating grooves electrically split the pair of patterned electrodes. The pair of patterned electrodes is partly positioned inside the peripheral side surface, and a connection portion connecting the at least one pair of patterned electrodes and at least one pair of patterned electrodes provided on the upper surface of the substrate of the electronic component is to be disposed inside the peripheral side surface that defines the pass-through hole.
Abstract:
A mounting board including a pair of patterned electrodes, a lower surface and an upper surface opposed thereto on which a substrate of an electronic component is to be mounted, a pass-through hole penetrating through the upper surface and the lower surface, and a peripheral side surface that defines the pass-through hole. The pass-through hole includes a plurality of penetrating grooves that are cut into the mounting board and penetrate through the upper and lower surfaces. The plurality of penetrating grooves electrically split the pair of patterned electrodes. The pair of patterned electrodes is partly positioned inside the peripheral side surface, and a connection portion connecting the at least one pair of patterned electrodes and at least one pair of patterned electrodes provided on the upper surface of the substrate of the electronic component is to be disposed inside the peripheral side surface that defines the pass-through hole.
Abstract:
An LED module structure and a light fixture provided with the structure includes a heat releasing casing; an LED package having an LED chip mounted on a base material, a material having both heat conductance and electric insulation property placed between the heat releasing casing and the LED package upon fitting of the LED package to the heat releasing casing, and a plastic fluid or adhesive agent having particles with high heat conductivity. The material has a groove with outside smaller than an outside dimension of the LED package. The groove receives excess plastic fluid or excess adhesive agent on a surface to which the LED package is firmly attached.
Abstract:
An illumination device is provided with an arrangement for reducing color unevenness. A plurality of light-emitting devices are provided, each of which includes a transparent enclosure sealing a light-emitting element and further including a phosphor excited by light emitted from the light-emitting element. A substrate is provided upon which the plurality of light-emitting devices are mounted. The light-emitting devices are provided with predetermined color temperatures that vary in accordance with their position along the substrate to reduce color unevenness, for example increasing in a phased manner from the center of the substrate toward the outer circumference thereof.
Abstract:
An illumination assembly is provided which is capable of correcting a color temperature. The assembly includes a substrate with a plurality of coatings applied on a respective plurality of surface portions of a base material. A light emitting device includes one or more light emitting elements of a first color temperature mounted on surface portions of the substrate having a first color coating, and one or more light emitting elements having a second color temperature mounted on surface portions of the substrate having a second color coating. Light emitting elements are individually sealed with a resin containing an excitable phosphor, with a reflectance factor of the first color coating and a reflectance factor of the second color coating set corresponding to light emitted from the light emitting elements having the first and second color temperatures, respectively, with respect to a desired color temperature for the light emitting device.
Abstract:
An LED module structure and a light fixture provided with the structure includes a heat releasing casing; an LED package having an LED chip mounted on a base material, a material having both heat conductance and electric insulation property placed between the heat releasing casing and the LED package upon fitting of the LED package to the heat releasing casing, and a plastic fluid or adhesive agent having particles with high heat conductivity. The material has a groove with outside smaller than an outside dimension of the LED package. The groove receives excess plastic fluid or excess adhesive agent on a surface to which the LED package is firmly attached.
Abstract:
Providing a spectrometric measuring instrument suitable for in-line measurement for example in a semiconductor manufacturing process, an FPD manufacturing process, or the like, by realizing size reduction and imparting resistance to distance fluttering, angle fluttering in a horizontal direction, and angle fluttering in a perpendicular direction. A light interference type spectral element for gradually changing a wavelength of transmitted light by means of a transmitted position is provided immediately before the photoelectric transfer part array device, and based upon a light-receiving side optical system having the function of detecting a change in state of polarization of a reflected light from a sample, and a series of light-receiving amount data obtained from each of photoelectric transfer parts of the photoelectric transfer part array device, polarized light is analyzed. By fitting of a measured waveform to a theoretical waveform, a film thickness or film quality is obtained.
Abstract:
[Problem to be Solved]To enhance the performance for separation of oil mist from blow-by gas.[Solution]A filter element 13 which is to be attached to an oil separator unit 3 includes a core 31. This core is a double tube having an internal cylindrical member 34 and an external cylindrical member 35, and a space between the internal cylindrical member and the external cylindrical member is used as a separation chamber 36. An injection hole 39 for injecting blow-by gas while increasing its flow velocity is provided in the internal cylindrical member. A surface which is an inner wall surface of the external cylindrical member and which faces the injection hole is a spraying surface onto which the blow-by gas injected from the injection hole is sprayed. Moreover, an opening for oil discharge from which oil OL condensed on the spraying surface is discharged, and an opening for discharge from which the blow-by gas from which oil mist has been separated is discharged are provided in the core.
Abstract:
[Problem to be Solved]To enhance the performance for separation of oil mist from blow-by gas.[Solution]A filter element 13 which is to be attached to an oil separator unit 3 includes a core 31. This core is a double tube having an internal cylindrical member 34 and an external cylindrical member 35, and a space between the internal cylindrical member and the external cylindrical member is used as a separation chamber 36. An injection hole 39 for injecting blow-by gas while increasing its flow velocity is provided in the internal cylindrical member. A surface which is an inner wall surface of the external cylindrical member and which faces the injection hole is a spraying surface onto which the blow-by gas injected from the injection hole is sprayed. Moreover, an opening for oil discharge from which oil OL condensed on the spraying surface is discharged, and an opening for discharge from which the blow-by gas from which oil mist has been separated is discharged are provided in the core.
Abstract:
An illumination assembly is provided which is capable of correcting a color temperature. The assembly includes a substrate with a plurality of coatings applied on a respective plurality of surface portions of a base material. A light emitting device includes one or more light emitting elements of a first color temperature mounted on surface portions of the substrate having a first color coating, and one or more light emitting elements having a second color temperature mounted on surface portions of the substrate having a second color coating. Light emitting elements are individually sealed with a resin containing an excitable phosphor, with a reflectance factor of the first color coating and a reflectance factor of the second color coating set corresponding to light emitted from the light emitting elements having the first and second color temperatures, respectively, with respect to a desired color temperature for the light emitting device.